反向放大电路并联电容与积分电路并联电阻的区别?

这篇具有很好参考价值的文章主要介绍了反向放大电路并联电容与积分电路并联电阻的区别?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

运放反相比例放大电路中反馈电阻两端经常并联一个电容,而运放积分电路的反馈电容上常常并联一个电阻,两者电路结构相似,如下所示(隐去阻容值),二者有何区别呢?电阻、电容分别又起到什么作用?
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件

反相放大电路:电阻为主,电容为辅。

先说结论,反相放大电路中,电阻为主,电容为辅,加上电容只是为了让电路更加稳定,避免高频干扰。

从时域角度理解:
我们在LTspice中搭建如下仿真电路,输入端Vin1模拟一个脉冲干扰,观察输出波形vout会怎样?
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
简单介绍:输入信号给1个激励脉冲,初始电平为0V,高电平为1V,1ms时刻开始上升,上升时间为50ns,高电平维持50ns,下降沿50ns。电阻R1为10k,电阻R2为100k,反馈电容设置为可变量C1_VALUE。仿真命令中将C1_VALUE设置为列表形式,取值依次为0pf和2pf,分别对应没有反馈电容和2pf反馈电容,对应的仿真输出曲线也有两条。

仿真结果如下:
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
蓝色线为输入信号,模拟1个向上的脉冲信号,上升时间为50ns,高电平为1V,维持50ns,下降沿50ns;
红色线(下面那条,C1_VALUE=0PF)为电容为0pf(即没有电容)时的输出,由图可见当没有反馈电容时,输入信号被反向放大10倍,幅度达到-10V;
红色线(中间那条,C1_VALUE=2PF)为电容为2pf时的输出,由图可见当有反馈电容时,输入信号也会被放大。但由于电容两端电压不能突变,输出电压并不是跟随输入立刻达到-10V,而是缓慢增大。还未达到最大值时,输入信号的脉冲干扰已经消失,此时输出电压不再增加,而是反向减小,恢复原值。与电容滤波原理一样。
电容滤波作用可查考一文彻底讲透电容 【3】—— 电容滤波,不是什么波都能滤的

下面再来另外一种解释方法,参考运放反馈电阻上并联一个小电容有什么作用?它积分运算放大器上的那个反馈电容一样吗?
个人觉得并不严谨,也可能是自己理解不够。

积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
假设输入信号Vin有个向上的脉冲干扰,该干扰传递到运放反相输入端,方向向上;而同相输入端接地,电压不变(由于时间很快,还未建立负反馈,因此虚短还未建立,即同相输入端和反相输入端电压并不一致)。由于运放放大作用此时输出端Vout有个向下脉冲干扰。但是因为有并联电容C1,电容两端电压不能突变,因此电容右端是缓慢向下变化的,与LTspice仿真图中类似。

以上通过仿真和电容知识分析了当有高频干扰时,电容可以起到“缓冲”的作用,减少干扰。

从频域角度理解:
R2、C1 共同组成反馈网络,确切说是“阻抗”,即二者并联值,运放的放大倍数由反馈“阻抗”决定,完整表达式为R2/((1+jwC1R2)*R1)。
对于直流信号而言,w为0(反馈电容阻抗1/jwC1无穷大,相当于开路),此时只有反馈电阻R1有作用,放大倍数退化为R2/R1;对于高频信号,w很大(反馈电容阻抗1/jwC1无穷小,相当于短路),放大倍数趋近于0,即滤除了高频信号,提高运放的稳定性,防止自激震荡。

仿真原理图如下:
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
简单介绍:幅频特性仿真,R1为10k,R2为100k,反馈电容设置为可变量C1_VALUE。仿真命令中将C1_VALUE设置为列表形式,取值依次为0pf和2pf,对应的仿真输出曲线也有两条。
仿真结果如下:
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
当反馈电容为0pf时,幅频特性曲线如蓝色线条所示,始终为20dB,即放大倍数为100k/10k=10倍。
当反馈电容为2pf时,幅频特性曲线如红色线条所示,呈低通滤波特性:低频段为20dB,随着频率上升增益下降,-3dB大约在797kHz,即1/(2piR2*C1)≈795kHZ,理论值与仿真结果一致。

小结
以上为理想运放仿真结果,实际上由于寄生电容的存在,高频干扰更容易造成电路不稳定。因此,为了提高运放的稳定性,防止自激震荡,可以适当增加反馈电容。反馈电容会改变相位并降低带宽,一般都是选pF级的电容,即电阻为主,电容为辅。

积分电路:电容为主,电阻为辅。

先说结论,运放积分电路中,电容为主,电阻为辅。加上电阻只是为了增加直流通路,避免输入失调电压、输入偏置电流等造成的持续电流使得运放进入饱和状态。

这里贴上《新概念电路》中积分器知识。
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
《新概念模拟电路》中已经讲得很清楚,我们这里做个仿真,原理图如下:
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
简单介绍:输入信号VIN设置为幅度1V,频率为5kHz的正弦信号。为了便于计算,电容C1设置为3.1831nf,即在5kHz频率下10k阻抗对应的电容值。运放为理想运放。
仿真结果如下:
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
红色为输入信号,幅度为1V,频率为5kHz,蓝色为输出信号,幅度也为1V,频率为5kHz,且输出信号明显为输入信号的积分,即该积分电路可正常工作。

上面为理想情况,实际工作中输入信号可能含有直流成分,运放存在失调电压和失调电流,无论那种情况都会使运放很快进入饱和状态,即输出接近±供电电压。
下面我们调整运放的参数失调电压为1V(实际一般为uV级到mV级,此处为了便于显示,修改为1V),仿真结果如下:
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
红色为输入信号,交流幅度为1V,频率为5kHz,蓝色为输出信号,趋近于﹣15V,即此时处于饱和状态。根据《新概念》,由于存在直流分量,一直对电容充电,这个时候运放无法维持虚短。图中,灰色线即为运放反相输入端电压,确实不为0,并没有和同相输入端的GND保持一致。

为了使积分电路能正常工作,电容两端并联一个电阻,本次仿真取100k,仿真结果如下:
积分运算电路电容并联电阻,器件,# 运算放大器,# 电容,嵌入式硬件
红色为输入信号,交流幅度为1V,频率为5kHz,蓝色为输出信号,均值为-10V,交流幅度为1V,频率为5kHz。灰色线即为运放反相输入端电压,为1V,与我们之前设置的失调电压1V相等,此时满足虚短。由图可见,输出信号为输入信号的积分,只不过多了个直流分量,相当于积分时的常量。本例中失调电压最终放大了10倍,实际使用时失调电压较小,对最终的输出影响也较小。
因此我们可以选取一个合适的电阻值,使积分电路可以正常工作,避免快速进入饱和状态。

也可以换个角度考虑,对于直流信号而言,电容阻抗无穷大,相当于开路,即没有反馈回路,不再满足虚短,那么运放同相输入端和反相输入端的压差肯定会使运放饱和。增加直流反馈通路后,对于直流信号,该电阻可以形成负反馈回路,避免运放饱和。而对于高频信号而言,电容阻抗较小,只要电阻不选得太小,此时并联阻抗取决于电容,电阻也不会影响电路额高频特性。

小结
为了避免积分电路进入饱和状态,需要增益一条直流反馈回路,确保运放工作在“深度负反馈区”,维持运放的虚短特性,此时积分器才可以正常工作。电阻的选取需要根据实际情况进行分析。文章来源地址https://www.toymoban.com/news/detail-803582.html

到了这里,关于反向放大电路并联电容与积分电路并联电阻的区别?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 模拟电路系列文章-放大电路输出电容

    目录 概要 整体架构流程 技术名词解释 技术细节 小结 提示:这里可以添加技术概要        一个运放组成的同相比例器(包含运放内部结构)所示,在它的输出端对地接了一个大电容C,这是一个极其危险的电路,一般会引起电路工作不稳定,特别是方波输入时会引起过大的

    2024年02月10日
    浏览(33)
  • ADC外部RC电路电阻和电容选取计算方法

    ADC是从模拟到数字世界的桥梁,当前ADC模块基本是MCU的标配,而且在转换速度和精度都有很好的表现,如NXP Kinetis KE15内部有2个16bit SAR型ADC模块(以精度制胜),可以配合EDMA完美实现双ADC的同步采样,STM32G4系列也有2个12bit但速度可达5M的ADC(以速度见长)。 相比很多以前需要MC

    2023年04月11日
    浏览(46)
  • 一种电阻电感电容自动识别及阻抗值测量电路

    笔者大学里一个模拟电赛的题目,做完之后闲着没事就传到这,希望和大家学习交流。 摘要 本电路能够实现自动识别电阻电感电容,并对它们的阻抗值进行测量。当分别接入电阻电感电容时,对应的小灯泡会发光,指示使用者查看相应的万用表。电阻测量范围为0.1 - 1k欧姆,

    2024年02月14日
    浏览(49)
  • 【其他-3C数码】电容屏和电阻屏的区别

    工作原理不同 电容屏利用电容原理工作,通过触摸屏上的电容板,可以i感知到人体电荷的变化,从而实现触摸操作。 电阻屏利用电阻原理工作,触摸时需要施加一定的压力,使两个电极之间的电阻发生变化,从而实现触摸操作。 灵敏度不同 电容屏灵敏度更高,可以感知到

    2024年01月16日
    浏览(38)
  • 定量分析计算51单片机复位电路工作原理 怎么计算单片机复位电容和电阻大小

    下面画出等效电路图  可以知道单片机内必然有一个电阻RX,为了简化分析,我们假设他是线性电阻(不带电容,电感的支路) 还有一个基础知识: 电容器的充电放电曲线: 还需要知道电容电压的变化是连续的,(高数知识)无法跳变。 一个很大的误区就是认为电容一上电

    2024年02月12日
    浏览(55)
  • 零基础学模拟电路--3.同相放大器、反相放大器、加法器、减法器、积分器、微分器

    基于上一节所讲的虚短和虚断,我们可以搭建出这些电路: ​ 同相放大器,反相放大器,加法器,减法器,积分器,微分器,电压跟随器。 接下来,我会运用虚断和虚断推导几个典型的电路。 其余的电路,希望大家能自己推导一遍 关于微分器和积分器,这里还得补充一个

    2024年02月07日
    浏览(51)
  • 运算放大电路的基础(秒懂)

    运算放大器(下文简称运放),理想的运放,它的输入阻抗无穷大,输出阻抗为零。 理想的运放电路分析有两大重要原则贯穿始终,即“虚短”与“虚断”。 “虚短”的意思是正端和负端接近短路,即V+ = V- ,看起来像“短路”; “虚断”的意思是流入正端及负端的电流接

    2024年02月13日
    浏览(36)
  • 运算放大电路设计实验

    实验目的和要求 * (目的 5 分,要求 5 分) 实验目的: 通过实验,进一步理解集成运算放大器线性应用电路的特点 掌握集成运算放大器线性应用电路的设计方法。 学会使用仿真平台搭建电路并且现场实际搭建运算放大器放大电路 实验要求: 利用集成运放电路实现非线性运算

    2024年02月08日
    浏览(40)
  • 基本运算放大电路

    我先说明。下面的内容应该很多人都看到过,但是我建议还是细看,最好自己推一下。我就是这么做的。 运算放大器工作原理综述: 运算放大器组成的电路五花八门,令人眼花瞭乱,在分析运算放大器工作原理时倘没有抓住核心,往往令人头大。本文收集运放电路的应用电

    2023年04月19日
    浏览(40)
  • 运算放大器的差分放大电路

    差分放大电路利用电路参数的对称性和负反馈作用,有效地稳定静态工作点,以放大差模信号抑制共模信号为显著特征,广泛应用于直接耦合电路和测量电路的输入级。但是差分放大电路结构复杂、分析繁琐,特别是其对差模输入和共模输入信号有不同的分析方法,难以理解

    2023年04月09日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包