【动态规划】【数学】【C++算法】18赛车

这篇具有很好参考价值的文章主要介绍了【动态规划】【数学】【C++算法】18赛车。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

作者推荐

视频算法专题

本文涉及知识点

动态规划汇总
数学

LeetCode818赛车

你的赛车可以从位置 0 开始,并且速度为 +1 ,在一条无限长的数轴上行驶。赛车也可以向负方向行驶。赛车可以按照由加速指令 ‘A’ 和倒车指令 ‘R’ 组成的指令序列自动行驶。
当收到指令 ‘A’ 时,赛车这样行驶:
position += speed
speed *= 2
当收到指令 ‘R’ 时,赛车这样行驶:
如果速度为正数,那么speed = -1
否则 speed = 1
当前所处位置不变。
例如,在执行指令 “AAR” 后,赛车位置变化为 0 --> 1 --> 3 --> 3 ,速度变化为 1 --> 2 --> 4 --> -1 。
给你一个目标位置 target ,返回能到达目标位置的最短指令序列的长度。
示例 1:
输入:target = 3
输出:2
解释:
最短指令序列是 “AA” 。
位置变化 0 --> 1 --> 3 。
示例 2:
输入:target = 6
输出:5
解释:
最短指令序列是 “AAARA” 。
位置变化 0 --> 1 --> 3 --> 7 --> 7 --> 6 。
提示:
1 <= target <= 104

这题太难了,反复看各位大佬的题解。结合自己的思考,总结出适合中国人理解的解法。
由于空格消失,故用_代替。

原理

令S=Ak1RAk2…Rkn 表示dp[x]的最短指令序列,x的取值范围(0,target]。An 代替n个A,n可以为0。定义S1,S2,S4,使得 S == Rk1+S1 S == Rk1R + S2 S == Ak1RAk2R+S4 。dp[x]的含义:当前速度为1,向当前方向行驶x的最短指令序列的长度。
S有如下性质:
一,一定不会以R结尾。假定以R结尾,删除它。距离不变。
二,一定不会以R开头。 否则删除RAk1R ,再在末尾增加 RRAk1或RAk1,指令长度不变或变短。
三,ki的i为奇数,则是正方向;i为偶数,则是反方向。如果x1和x2奇偶性相同,则交换kx1和kx2,行驶的路程不变。对奇数ki按降序排序,对偶数ki按降序排序。
四,x1和x2奇偶性不同。则kx1一定不等于kx2,否则通过性质三,移到最后然后删除。
五,x1和x2奇偶性不同。kx1>=3 ,则kx1一定不等于kx2+1,否则kx1变kx2,kx2变0使得,末尾加RA或RRA。
六,如果ki>=4,则ki顶多出现一次。否则将第一个Aki变成Aki+1,第二个Aki删除,末尾追加RRA或RA。
七,如果ki等于1。则最多出现2次。否则将三个A,变成A2 A0 A0。3个字符变2个字符。
八,如果ki等于2。则最多出现2次。否则将三个AA 变成A^3 A A。6个字符变5个字符。
九,如果ki等于3。则最多出现2次。否则将三个AAA变成,A^4 A^2 A^2。9个字符变8个字符。
十,如果x+1等于2k,则最短指令就是Ak。每一步都是最大加速,最大移动距离。
十一,假定某段指令的k1为x,则此指令的最大行驶距离vMaxDis(x)为(正方向全部选择,负方向全部不选择):
x == 0,最大行驶距离0。
x== 1,2个A最大行驶距离为2。
x== 2,当有两个AA时,不会再有A,故最大行驶距离为6。AA_AA_ A -> AAA 5个字符变3个字符。只能AA A_A 行程5,AA_AA 行程6。
x== 3 当两个AAA存在时,不会存在A或AA,最大行驶距离:14。AAA
AAA_ A => AAAA 7个字符变4个字符 AAA _AAA AA => AAAA A A 8个字符变6个字符。2个AAA的行程是14。其它组合不会超过14。
x==4 1个A
AA …Ax 。和为:Sum i = 1 : x _{i=1}^{:x} i=1:x(2i-1) = Sum i = 1 : x _{i=1}^{:x} i=1:x(2i)-x = 2^(x+1)-2- x 。A _AA AAA 做特殊处理,删除A AA _AAA ,加上14,即 - 11+14 , 2^(x+1)-2- x+3= 2(x+1) - x +1
十二,假定某段指令的k1为x,则k2的最大值为vK2Max(k1):
根据性质四,k2一定不等于k1。
根据性质五,如果x>=3,则k2一定不是x-1,也不是x+1。
如果x >= 3,k2>=x+2 无论如何都会让行驶的距离为负
k1行驶的路程-k2行驶的路径+ vMaxDis(k1) = 2k1-2^(k1+2) + 2(k1+1)-k1+1 = -2k1-k1 + 1 路程恒定为负,淘汰。

综上所述:x>=3 k2的最大值为x-2。
k1为0,无意义。
k1为1,k2最大为0;如果k2为1,和k1抵消;如果k2为2,则行驶的总距离一定为负。
k1为2,k2可以为1。h1为2时,最大正方向为6。h2为3的话,负方向至少为7。总行程必定为负。故h2最大为1。
h2一定小于h1
十三:假定某段指令的k1为x,则最小行驶距离vMinDis(x)(除k1外,正方向全部不选,负方向全选)为
故:vMinDis(x) = 2x-1 - vMaxDis(vK2Max(x))
vMinDis的计算值大于实际值,动态规划时可能会有遗漏造成错误。小于实际值,只会多计算几次,不会造成错误。故为了简化问题:令vMinDis(1)和vMinDis(2)等于0。

实现

初始化时计算vK1,如果vK1[x]记录符合以下条件的k1。vMinDis(k1) <= x 且vMaxDis(k1)>=x。
动态规划的状态表示,则初始速度为1,向当前方向行驶x的最短指令流为dp[x]。动态规划的初始值dp[0]=0。
动态规划的填表顺序:
第一层循环: 从1到大枚举x。
第二层循环:枚举可能k1。
第三层循环: 枚举可能的k2。
动态规划的返回值:dp.back()。
难点 dp[x]的x必须在区间[0,x)

动态规划的转移方程

根据上面的十余条性能,可以淘汰很多指令系列。我们只需要计算dp[x],x取值范围[1,target]如果无法表示此范围的行程,也淘汰掉。
由于是从小到大计算x,转移方程中用到的dp[y] ,y的取值范围必须是[0,x),否则无法保证无后效性。
则 S1 行驶的路程为: x - (2k1-1)
S2 行驶的路程为:y = (2k1-1) - x
如果y == 0 , 直达 dp[x] = k1
如果 y 取值[0,x) dp[x] = k+1 + dp[y] 如果S2有更短的指令,替换S2,则S更短
如果 y >= x , 抛弃,见下面的证明一。
如果y < 0
枚举h2,已证明h2 >=0 且 h2 < h1。
令y1是S4行驶的总路程。
令y1 =x - ( 2k1-1)+ (2k2-1) = x - 2k1+2k2
由于k1 > k2 ,所以 y1 < x
y < 0 ==>> x - 2k1+1 > 0
k2的最小值为0,故2k2的最小值为1 故 y1 > 0 。
由于y1取值范围(0,x) 无法到x,故h3必定存在。
可以这样理解:向前走了一段没到目标,向后走了一段(小于向前的距离,且大于等于0)。必定不会到达目标,也不会回到起点。
dp[y1]对应的指令串就是S4,否则替换S4,S会变短。

证明一:2k1-1 != 2x。
如果两者相等,则直接用S2代码代替S,更短。
证明二:2k1-1 不大于 2
x。
假定2k1-1 > 2x 也就是2k1-1 >= 2x +1 ==>>> 2k1 >= 2*(x+1) ===>>> 2k-1 >= x+1 式子一
以Ak2开头的S2,必须能等于 2k1-1 - x ,
a,k1 >= 4 假设一
根据性质五,h2 <= k1-2
S2的最大路程为:
2(x+1) - x +1
将k1-2 代替x
2k1-1- (k1-2)+1 = 2k1-1-k1+3
假定S2的最大路程能>=y:
2k1-1-k1+3 >= 2k1-1 - x
-k1+3 >= 2k-1 -1 - x
x+4 >= 2k-1 +k1 假设二
式子一和假设一
===>>> 2k-1 +k1 >= x+5 ==>>> 2k-1 +k1 > x+4 ==》 x+4 < 2k-1 +k1 式子二
假设二和式子二矛盾
b:k1 <= 3
k1等于0,总路程小于等于0,无意义。
k1等于1,k2为0。h2 h4 h6是递减的,如果h2为0,则h2 h4 h6…全部为0,也就是没有返程。没有返程意味者k1走的路程 <= x。
k1等于2,k2为1。k1的路程为3,只有当x1=1,才符合3>2*x。x=1的时候,最短距离是A。显然k1不等于2。h2为0同上。
k1等于3,k1的路程为7,只有x等于1 2 3 才符合,最短串分别为 A ARRA(或AARA) AA 。 k1都不为3。

代码

class Solution {
public:
	int racecar(int target) {
		auto K2Max = [](int k1)
		{
			static vector<int> v = { 0,0,1 };
			return k1 >= v.size() ? k1 - 2 : v[k1];
		};
		vector<int> vMaxDis = { 0 } ,vMinDis = { 0 };
		for (int k1 = 1; ; k1++)
		{
			int iMax = (1 << (k1 + 1)) - 2 - k1 ;
			if (1 == k1)
			{
				iMax += 1;
			}
			else if(2 == k1)
			{
				iMax += 4;
			}
			else
			{
				iMax += 11;
			}
			const int iMin = (1 << k1) - 1 - vMaxDis[K2Max(k1)];
			if (iMin > 10000)
			{
				break;
			}
			vMaxDis.emplace_back(iMax);
			vMinDis.emplace_back(iMin);
		}

		vector<vector<int>> vK1(target + 1);
		for (int i = 1; i < vMaxDis.size(); i++)
		{
			for (int x = max(1, vMinDis[i]); x <= min(target, vMaxDis[i]); x++)
			{
				vK1[x].emplace_back(i);
			}
		}
		vector<int> dp(target + 1, 100'000);
		dp[0] = 0;
		for (int x = 1; x <= target; x++)
		{
			for (const auto& k1 : vK1[x])
			{
				const int iRemain = (1 << k1) - 1 - x;
				if ( 0 == iRemain )
				{
					dp[x] = k1;//只有k1
					break;
				}
				if (iRemain > 0)
				{	
					if (iRemain < x)
					{
						dp[x] = min(dp[x], k1 + 1 + dp[iRemain]);//超出部分
					}
					continue;
				}
				for (int k2 = 0; k2 <= K2Max(k1); k2++)
				{
					const int iNewX = x - (1 << k1) + (1 << k2);//iNew为0,有k2无k3
					if (iNewX < 0)
					{
						assert(false);
					}
					else
					{
						dp[x] = min(dp[x], k1 + k2 + 1 + (0 != iNewX) + dp[iNewX]);
					}
				}
			}
		}
		return dp.back();
	}
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}

}

int main()
{	
	{
		Solution sln;
		vector<int> ans = { 1,4,2,5,7,5,3,6,8,7,10,7,9,6,4,7,9,8,11,12,10,9,12,9,11,13,11,8,10,7,5,8,10,9,12
							,13,11,10,13,15,14,15,13,14,12,11,14,11,13,16,14,17,14,15,13,10,12,14,12,9,11,8,
							6,9,11,10,13,14,12,11,14,16,15,16,14,15,13,12,15,17,16,19,19,18,17,18,16,18,18,17,15,16,14,13,16,13,15,18,16,19
		};
		for (int i = 0; i < 100; i++)
		{
			auto res = sln.racecar(i + 1);
			Assert(res, ans[i]);
		}		
	}
	{
		Solution sln;
		vector<int> ans = { 45, 43, 40, 41, 43, 42, 44, 43, 44, 42, 39, 40, 42, 41, 38, 39, 37, 34, 36, 39, 37, 40, 42, 40, 38, 41, 43
			, 42, 45, 42, 44, 41, 39, 42, 44, 43, 46, 47, 45, 44, 47, 44, 46, 48, 46, 43, 45, 42, 40, 43, 45, 44, 47, 48, 46, 45, 48, 50, 49, 50, 48, 49, 47, 46, 49, 46, 48, 51, 49, 52, 49, 50, 48, 45, 47, 49, 47, 44, 46, 43,
			41, 44, 46, 45, 48, 49, 47, 46, 49, 51, 50, 51, 49, 50, 48, 47, 50, 52, 51, 54 };
		for (int i = 0; i < 100; i++)
		{
			auto res = sln.racecar(10000-i);
			Assert(res, ans[i]);
		}
	}
}

附录:
k1:1 minDis:1 maxDis:2
k1:2 minDis:1 maxDis:8
k1:3 minDis:5 maxDis:22
k1:4 minDis:7 maxDis:37
k1:5 minDis:9 maxDis:68
k1:6 minDis:26 maxDis:131
k1:7 minDis:59 maxDis:258
k1:8 minDis:124 maxDis:513
k1:9 minDis:253 maxDis:1024
k1:10 minDis:510 maxDis:2047
k1:11 minDis:1023 maxDis:4094
k1:12 minDis:2048 maxDis:8189
k1:13 minDis:4097 maxDis:16380
k1:14 minDis:8194 maxDis:32763

2023年1月版

class Solution {
public:
bool AddQue(int(vHasDisSpeed)[41], vector<std::pair<int, int>>& qDisSpeed, int iDis, int iSpeed, int iOpeNum)
{
iSpeed += 20;
if ((iDis < 0) || (iDis >= m_target
2 ))
{
return false;
}
if (INT_MAX != vHasDisSpeed[iDis][iSpeed])
{//已经处理
return true;
}
vHasDisSpeed[iDis][iSpeed] = iOpeNum;
qDisSpeed.emplace_back(iDis, iSpeed);
return true;
}
int racecar(int target) {
m_target = target;
int vHasDisSpeedOpeNum[10000 * 2][41] = { INT_MAX };
for (int i = 0; i < sizeof(vHasDisSpeedOpeNum) / sizeof(vHasDisSpeedOpeNum[0]); i++ )
for (int j = 0; j < sizeof(vHasDisSpeedOpeNum[0]) / sizeof(vHasDisSpeedOpeNum[0][0]); j++)
{
vHasDisSpeedOpeNum[i][j] = INT_MAX;
}
vector<std::pair<int, int>> qDisSpeed;
AddQue(vHasDisSpeedOpeNum, qDisSpeed, 0, 1, 0);
for (int i = 0; i < qDisSpeed.size();i++ )
{
int iDis = qDisSpeed[i].first;
const int iOpeNum = vHasDisSpeedOpeNum[iDis][qDisSpeed[i].second];
int iSpeedK = qDisSpeed[i].second - 20;
int iSpeed = 1 << (abs(iSpeedK)-1);
if (iSpeedK < 0)
{
iSpeed *= -1;
}
if (iDis + iSpeed == target)
{
return iOpeNum + 1;
}
AddQue(vHasDisSpeedOpeNum, qDisSpeed, iDis + iSpeed, iSpeedK > 0 ? iSpeedK + 1 : iSpeedK - 1, iOpeNum + 1);
AddQue(vHasDisSpeedOpeNum, qDisSpeed, iDis, iSpeedK > 0 ? -1 : 1, iOpeNum + 1);
}
return -1;
}
int m_target;
};

2023年8月版

class Solution {
public:
int racecar(int target) {
if (1 == target)
{
return 1;
}
if (2 == target)
{
return 4;
}
vector dp(target + 1,INT_MAX);
dp[1] = 1;
dp[2] = 4;
int k = 1;
for (int i = 3; i <= target ;i++ )
{
while ((1 << (k + 1)) <= i+1)
{
k++;
}
{
const int first = (1 << k) - 1;
if (first == i)
{
dp[i] = k;
continue;
}
for (int j = 0; j < k; j++)
{
dp[i] = min(dp[i], k + 1 + j + 1+ dp[i - first + (1 << j )-1]);
}
}
{
const int first = (1 << (k+1)) - 1;
dp[i] = min(dp[i], (k + 1) + 1 + dp[first - i]);
}
}
return dp.back();
}
};

【动态规划】【数学】【C++算法】18赛车,# 算法题,数据结构与算法,算法,动态规划,c++,LeetCode,赛车,指令序列,转向

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 **C+

+17**
如无特殊说明,本算法用**C++**实现。

【动态规划】【数学】【C++算法】18赛车,# 算法题,数据结构与算法,算法,动态规划,c++,LeetCode,赛车,指令序列,转向文章来源地址https://www.toymoban.com/news/detail-803943.html

到了这里,关于【动态规划】【数学】【C++算法】18赛车的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • python算法与数据结构---动态规划

    记不住过去的人,注定要重蹈覆辙。 对于一个模型为n的问题,将其分解为k个规模较小的子问题(阶段),按顺序求解子问题,前一子问题的解,为后一子问题提供有用的信息。在求解任一子问题时,通过决策求得局部最优解,依次解决各子问题。最后通过简单的判断,得到

    2024年02月20日
    浏览(76)
  • 数据结构与算法之贪心&动态规划

            一:思考         1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束 时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?电影的话 那肯定是最多加票价最高的,入场

    2024年02月09日
    浏览(47)
  • 数据结构与算法 | 动态规划算法(Dynamic Programming)

    上一篇文末已经提到了记忆化搜索是动态规划(Dynamic Programming)的一种形式,是一种自顶向下(Top-Down)的思考方式,通常采用递归的编码形式;既然动态规划有自顶向下(Top-Down)的递归形式,自然想到对应的另外一种思考方式 自底向上( Bottom-Up ) ,也就是本篇要写的内

    2024年02月05日
    浏览(46)
  • Java数据结构与算法----动态规划(背包篇)

    1.1.算法思路 0/1背包是动态规划、背包问题中最经典的问题啦!它主要的问题是: 给定n种物品、这n种物品的重量分别是,价值分别是 ,而你有一个容量为C的背包,请问如何求出所能拿的最大价值呢? 对于动态规划,我们先需要找到一条推导公式,然后确定边界: 我们设

    2024年02月07日
    浏览(50)
  • 数据结构与算法:动态规划(Dynamic Programming)详解

    动态规划(Dynamic Programming,简称DP) 是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。动态规划经常被用于求解优化问题。 动态规划的核心思想是将复杂问题分解为更小的子问

    2024年04月25日
    浏览(48)
  • ​Python—数据结构与算法​---动态规划—DP算法(Dynamic Programing)

    目录 我们一路奋战, 不是为了改变世界, 而是为了不让世界改变我们。 动态规划——DP算法(Dynamic Programing) 一、🏔斐波那契数列(递归VS动态规划) 1、🐒斐波那契数列——递归实现(python语言)——自顶向下 2、🐒斐波那契数列——动态规划实现(python语言)——自底

    2024年02月10日
    浏览(40)
  • 【数据结构与算法】Kadane‘s算法(动态规划、最大子数组和)

    Kadane\\\'s 算法是一种用于解决最大子数组和问题的动态规划算法。这类问题的目标是在给定整数数组中找到一个连续的子数组,使其元素之和最大(数组含有负数)。 算法的核心思想是通过迭代数组的每个元素,维护两个变量来跟踪局部最优解和全局最优解。 以下是Kadane’s算

    2024年03月22日
    浏览(102)
  • python数据结构与算法-动态规划(最长公共子序列)

    一个序列的子序列是在该序列中删去若干元素后得 到的序列。 例如:\\\"ABCD”和“BDF”都是“ABCDEFG”的子序列。 最长公共子序列(LCS) 问题: 给定两个序列X和Y,求X和Y长度最大的公共子字列。 例:X=\\\"ABBCBDE”Y=\\\"DBBCDB”LCS(XY)=\\\"BBCD\\\" 应用场景:字符串相似度比对 (1)问题思考 思考: 暴

    2024年02月08日
    浏览(53)
  • 【夜深人静学数据结构与算法 | 第十篇】动态规划

    目录 前言: 动态规划: 常见应用: 解题步骤:  动态规划的简化步骤: 案例: 509. 斐波那契数 - 力扣(LeetCode) 70. 爬楼梯 - 力扣(LeetCode) 62. 不同路径 - 力扣(LeetCode) 总结:         本文我们将为大家讲解一下动态规划的理论知识,并且会讲解几道力扣的经典例题。

    2024年02月11日
    浏览(53)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包