GPT应用开发:GPT插件开发指南

这篇具有很好参考价值的文章主要介绍了GPT应用开发:GPT插件开发指南。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

欢迎阅读本系列文章!我将带你一起探索如何利用OpenAI API开发GPT应用。无论你是编程新手还是资深开发者,都能在这里获得灵感和收获。

本文,我们将继续展示聊天API中插件的使用方法,让你能够轻松驾驭这个强大的工具。

插件运行效果

首先给大家展示下插件的运行效果,如下图所示:

GPT应用开发:GPT插件开发指南

可以看到,每次询问GPT,它都会返回指定城市的实时天气信息,这个天气是真实的,不是GPT瞎编的,是GPT通过一个实时天气插件查询到的。

插件运行原理

知己知彼,百战不殆!首先让我们来了解下插件的运行原理。如下图所示:

GPT应用开发:GPT插件开发指南

首先我们在客户端发起一个聊天会话,比如询问GPT:“今天天气怎么样?”

为了使用我们自己的插件,我们还需要告诉GPT有哪些插件可用,目前这需要我们在发起聊天时传递一个支持的插件列表给GPT。

然后GPT收到我们的聊天后,它会根据用户的聊天内容去匹配插件,并在返回的消息中指示命中了哪些插件,这个匹配是根据GPT的语言理解能力做出的。

然后客户端就可以检查命中了哪些插件,并调用执行本地相应的插件方法。插件方法是在本地执行的,这也比较合理,如果放到GPT服务端,GPT不仅要适配各种计算能力,还可能面临巨大的安全风险。

然后客户端将插件的执行结果附加到本次聊天会话中,再次发起聊天请求,GPT收到后,会根据首次聊天请求和插件生成的内容组织本次聊天响应结果,再返回给用户。

这样就完成了一次基于插件的GPT会话。

插件使用示例

基于上面的运行原理,我们来编写一个GPT插件的示例程序。

在这个示例程序中,我将提供一个天气查询的插件,当用户询问GPT今天的天气时,GPT就会命中这个插件,然后插件会调用外部API获取实时的天气情况,最后GPT会使用插件生成的结果组织一段文字回复返回给用户。

编写天气插件

这里我们将使用“心知天气”提供的免费天气查询服务,大家感兴趣的可以去这里注册个账号:https://www.seniverse.com/,注册成功后,需要复制账号的私钥,调用天气接口时会用到。

GPT应用开发:GPT插件开发指南

然后我们就可以编写天气查询插件了,这里直接给出我的代码:

def get_city_weather(param):
    city = json.loads(param)["city"]
    params = {
        "key": "这里换成你的天气产品私钥",
        "location": city,
        "language": "zh-Hans",
        "unit": "c",
    }
    url = "https://api.seniverse.com/v3/weather/now.json"
    r = requests.get(url, params=params)
   
    data = r.json()["results"]
    address = data[0]["location"]['path']
    temperature = data[0]['now']["temperature"]
    text = data[0]['now']["text"]
    return address+",当前天气:"+text+",温度:"+temperature+ "℃"

可以看到就是一个Python函数,接收json格式的参数,返回天气描述信息。

注意这里的参数格式(包括有哪些参数)是和GPT大模型匹配过的,下文会讲到怎么定义参数。

接口的主要逻辑就是使用城市名称,调用实时天气接口获取天气信息,然后再拼接成一段话并返回。

我这里只使用了天气的部分指标,详细指标大家可以看接口文档:

https://seniverse.yuque.com/hyper_data/api_v3/nyiu3t?#%20%E3%80%8A%E5%A4%A9%E6%B0%94%E5%AE%9E%E5%86%B5%E3%80%8B

发起带插件的聊天

话不多说,看代码:

client = OpenAI(api_key='sk-xxx')

# 聊天消息上下文
messages=[{
    "role": "user",
    "content": "请问现在天气怎么样?",
}]

# 天气插件
weather_tool = {
        "type": "function",
        "function": {
            "name": "get_city_weather",
            "description": "获取某个城市的天气",
            "parameters": {
                "type": "object",
                "properties": {
                    "city": {
                        "type": "string",
                        "description": "城市名称",
                    },
                },
                "required": ["city"],
            },
        }
    }

# 发起聊天请求
response = client.chat.completions.create(
    messages=messages,
    model='gpt-3.5-turbo-1106',
    stream=False,
    # 插件相关
    tool_choice="auto",
    tools=[weather_tool]
)

在上面这段代码中,我们首先声明了一个OpenAI客户端,没有API Key的同学可以看文章最后。

然后我们创建了一个很普通的聊天会话,就是以普通用户的身份询问GPT今天的天气情况。

然后我们定义了一个天气插件,其实就是一个Json对象。

  • type:目前只能传 fucntion,也就是说目前插件就是外置函数。
  • function:函数的定义。
    • name:函数的名称,这里就是我们上边定义的 get_city_weather。
    • description:函数的描述,GPT将使用这个描述来决定什么时候以及如何调用函数。
    • parameters:函数的参数。
      • type:固定object
      • properties:定义函数的各个参数,每个参数包含两个属性:type和description,description也很重要,让GPT模型知道怎么来提供这个参数。
      • required:数组,定义必填的参数。

最后我们向GPT发起本次聊天请求,其中增加了关于插件的两个参数:

  • tool_choice:开启插件,固定值 auto,设置为none则不使用插件。
  • tools:插件列表,包含我们上边定义的 weather_tool 插件。

处理插件命中

如果GPT大模型命中了插件,它会在返回值中携带一些信息。根据这些信息,我们可以知道要调用哪个插件的函数,然后再把函数的执行结果附加到消息上下文中,再请求GPT大模型,GPT大模型会使用函数返回值组织文本内容,最终返回给用户。

相关代码如下:

response_message = response.choices[0].message
if response_message.tool_calls is not None:
    tool_call = response_message.tool_calls[0]
    messages.append(response_message)
    messages.append({
        "role": "tool",
        "content": get_city_weather(tool_call.function.arguments),
        "tool_call_id": tool_call.id
    })

    response = client.chat.completions.create(
        messages=messages,
        model='gpt-3.5-turbo-1106',
        stream=False,
        tool_choice="auto",
        tools=[weather_tool]
	)

    print(response_message.choices[0].message.content)

判断是否命中插件使用的是 response_message.tool_calls is not None,也就是返回值中的 tool_calls 不为空,因为这里只有一个插件,所以我们没有做进一步的判断;如果有多个插件,可以遍历tool_calls,根据插件关联函数的 name,选择执行不同的方法。

注意这里我们把本次响应的消息又追加到了上下文中:messages.append(response_message)。

然后我们又追加了插件生成的消息,就是下面这段:

messages.append({
        "role": "tool",
        "content": get_city_weather(tool_call.function.arguments),
        "tool_call_id": tool_call.id
    })

介绍下这几个字段:

  • role:指定这个消息来自插件。
  • content:指定消息的内容。get_city_weather 就是我们上边定义的插件方法,而它的参数 tool_call.function.arguments 则是大模型生成的 ,这个方法会在在本地执行,并生成一段天气信息描述。
  • tool_call_id:这段消息关联的插件id,需要让大模型了解这个数据关系。

然后我们又通过 client.chat.completions.create 向GPT大模型发起请求 ,并拿到最终的返回结果。

完整的代码示例

因为上文中两次请求GPT大模型的方法都是一样的,所以我们这里把它抽象为一个方法。

另外为了充分展现插件的使用方法,这里会向GPT询问三个城市的天气信息,通过循环发起。

from openai import OpenAI
import json
import requests
import time

# 获取天气的方法
def get_city_weather(param):
    city = json.loads(param)["city"]
    params = {
        "key": "这里换成你的天气产品私钥",
        "location": city,
        "language": "zh-Hans",
        "unit": "c",
    }
    url = "https://api.seniverse.com/v3/weather/now.json"
    r = requests.get(url, params=params)
    
    data = r.json()["results"]
    #print(json.dumps(data))
    address = data[0]["location"]['path']
    temperature = data[0]['now']["temperature"]
    text = data[0]['now']["text"]
    return address+",当前天气:"+text+",温度:"+temperature+ "℃"
          
# 天气插件的定义
weather_tool = {
        "type": "function",
        "function": {
            "name": "get_city_weather",
            "description": "获取某个城市的天气",
            "parameters": {
                "type": "object",
                "properties": {
                    "city": {
                        "type": "string",
                        "description": "城市名称",
                    },
                },
                "required": ["city"],
            },
        }
    }

# 创建OpenAI客户端,获取API Key请看文章最后
client = OpenAI(api_key='sk-xxx')

# 定义请求GPT的通用方法
def create_completion():
    return client.chat.completions.create(
        messages=messages,
        model='gpt-3.5-turbo-1106',
        stream=False,
        tool_choice="auto",
        tools=[weather_tool]
    )


# 我的三个问题
questions = ["请问现在天气怎么样?","请问上海天气怎么样?","请问广州天气怎么样?"]

# 聊天上下文,初始为空
messages=[]

print("---GPT天气插件演示--- ")

# 遍历询问我的问题
for question in questions:  
   
    # 将问题添加到上下文中
    messages.append({
        "role": "user",
        "content": question,
    })
    print("路人甲: ",question)
    
    # 请求GPT,并拿到响应
    response_message = create_completion().choices[0].message
    # 把响应添加到聊天上下文中
    messages.append(response_message)
    #print(response_message)
    # 根据插件命中情况,执行插件逻辑
    if response_message.tool_calls is not None:
        tool_call = response_message.tool_calls[0]
        #print("tool_call: ",tool_call.id)
        # 追加插件生成的天气内容到聊天上下文
        weather_info = get_city_weather(tool_call.function.arguments)
        #print(weather_info)
        messages.append({
            "role": "tool",
            "content": weather_info,
            "tool_call_id": tool_call.id
        })
        # 再次发起聊天
        second_chat_completion = create_completion()
        gpt_output = second_chat_completion.choices[0].message.content
        # 打印GPT合成的天气内容
        print("GPT: ",gpt_output)
        time.sleep(0.2)
        # 将GPT的回答也追加到上下文中
        messages.append({
            "role": "assistant",
            "content": gpt_output,
        })

以上就是本文的主要内容,有没有感受到插件的强大能力!

后续我还会继续分享图片、语音、文档助手等API的使用方法。

如需GPT账号、学习陪伴群、AI编程训练营,推荐关注小册:大模型应用开发 | API 实操

关注萤火架构,加速技术提升!文章来源地址https://www.toymoban.com/news/detail-804165.html

到了这里,关于GPT应用开发:GPT插件开发指南的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • ubuntu can应用开发环境搭建指南

    can数据发送这个采用来自网上的一段代码进行测试: can_send.c代码内容如下:

    2024年02月11日
    浏览(55)
  • Web 应用项目开发的完整指南

    目录 一、web介绍: 二、使用IntelliJ IDEA 搭建 Web 开发环境:简易指南 三、常用注解的使用 Web(World Wide Web)是指互联网上的一个大规模信息系统,通过超文本链接和互联网协议进行交互。它是一种基于客户端-服务器模型的分布式系统,由许多网络服务器构成,通过互联网连

    2024年02月04日
    浏览(42)
  • 全网最全Android compose开发应用指南

    Jetpack Compose 是一款基于Kotlin API,重新定义Android布局的一套框架。它可简化并加快 Android 上的界面开发。使用更少的代码、强大的工具和直观的 Kotlin API,快速让应用生动而精彩。对于开发者而言最直观的就是 节省开发时长,减少包体积,提高应用性能 。 如果你是新项目 。

    2023年04月10日
    浏览(53)
  • 前端桌面应用开发实践:Electron入门指南

    随着互联网的快速发展,前端开发不再局限于网页应用,而是逐渐涉及到桌面应用的开发。Electron作为一种流行的前端桌面应用开发框架,为开发者提供了一种快速构建跨平台桌面应用的方式。本文将介绍Electron的基本概念和使用方法,并通过一个简单的示例来说明其开发实践

    2024年02月11日
    浏览(47)
  • 实战指南 | Serverless 架构下的应用开发

    UC Berkeley认为Serverless架构的出现过程类似于40多年前从汇编语言转向高级语言的过程,在未来Serverless架构的使用会飙升,或许服务器式云计算并不会消失,但是将促进BaaS发展,以更好地为Serverless架构提供支持。 Serverless 架构的应用开发流程 基于 Serverless 架构的应用开发流程

    2024年02月12日
    浏览(41)
  • Android 车载应用开发指南(3) - SystemUI 详解

    Android 车载应用开发指南系列文章 Android 车载应用开发指南(1)- 车载操作系统全解析 Android 车载应用开发指南(2)- 应用开发入门 Android 车载应用开发指南(3)- SystemUI 详解 SystemUI 全称 System User Interface ,直译过来就是 系统级用户交互界面 ,在 Android 系统中由 SystemUI 负责

    2024年02月19日
    浏览(44)
  • HarmonyOS应用开发者认证题目满分指南

    为了帮助大家快速的上手HarmonyOS应用程序开发,官方制作了一些免费的课程:HarmonyOS第一课。每个课程后面都有一些练习题,下面就是这些题目的满分答案。 判断题 1.DevEco Studio是开发HarmonyOS应用的一站式集成开发环境。 (正确) 2.main_pages.json存放页面page路径配置信息。(正

    2024年02月05日
    浏览(61)
  • HarmonyOS应用开发者高级认证满分指南

    声明:由于HarmonyOS应用开发者高级认证的题库一直在变,所以文章中的题目直做参考。 云函数打包完成后,需要到APPGallery Connect创建对应函数的触发器才可以在端侧中调用。 【错】 每一个自定义组件都有自己的生命周期。 【对】 基于端云一体化开发,开发者需要精通前端

    2024年04月26日
    浏览(49)
  • CoreDX DDS应用开发指南(9)服务质量QoS

            DDS的强大功能之一是支持各种服务质量(QoS)设置。QoS设置允许应用程序开发人员定制发布者、订阅者的行为以及它们之间的通信。         从DomainParticipantFactory到DataReader和DataWriter,大多数DDS实体都有一组适用的QoS设置。QoS设置包含在一个结构中。      

    2024年02月08日
    浏览(51)
  • CoreDX DDS应用开发指南(15)故障排除Troubleshooting

            网络通信可能很难排除故障。建议开发人员熟悉开发网络上可用的标准工具。例如,在UNIX下,ifconfig、netstat和route等工具对于了解网络配置非常有用。此外,捕获和解码网络流量的工具非常有用。wireshark工具具有广泛的平台支持,并包括用于RTPS(DDS有线协议)的

    2024年02月09日
    浏览(51)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包