【算法基础】前缀和与差分

这篇具有很好参考价值的文章主要介绍了【算法基础】前缀和与差分。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

😽 PREFACE
🎁欢迎各位→点赞 👍 + 收藏 ⭐ + 评论 📝
📢系列专栏: 算法
💪 种一棵树最好是十年前其次是现在

1.什么是前缀和

前缀和指一个数组的某下标之前的所有数组元素的和(包含其自身)。前缀和分为一维前缀和,以及二维前缀和。前缀和是一种重要的预处理,能够降低算法的时间复杂度。可以快速地求出某一段的和。

2.一维前缀和

2.1 前缀和公式

已知数组 一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
前缀和: 一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档

2.2 前缀和的作用

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档

而且前缀和时间复杂度:预处理O(n),查询O(1),效率比较高效,后续也会有一些其他的解法,比如说线段树,树状数组等,前缀和的运行时间是最短的。

【补】关于左端边界是1的选择

我们会发现求l到r的和时,用的是一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档,类似于数学里面的数列,此时令下标要l-1>=0,这就保证了一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档不需要定义任何的变量,使用起来比较简单

2.3 习题:前缀和

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
#include <iostream>
using namespace std;
const int N=1e5+10;
int n,m;
int a[N],s[N];
int main()
{
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++)  scanf("%d",&a[i]);
    for(int i=1;i<=n;i++)  s[i]=s[i-1]+a[i];//前缀和初始化
    
    while(m--)
    {
        int l,r;
        scanf("%d %d",&l,&r);
        printf("%d\n",s[r]-s[l-1]);//区间和计算
    }
    return 0;
    
}

3.二维前缀和

3.1 二维前缀和公式

首先二维前缀和公式的成立是基于容斥定理的,二维前缀和实际上就是二维数组上的前缀和了。一维数组的前缀和也是一个一维数组,同样地,二维数组的前缀和也是一个二维的数组。

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
红色区域的和:一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档

3.2 习题:子矩阵的和

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档这一子矩阵中的所有数之和为:
一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
#include <iostream>
using namespace std;
const int N =1010;
int n,m,q;
int a[N][N],s[N][N];

int main()
{
    scanf("%d %d %d",&n,&m,&q);
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            scanf("%d",&a[i][j]);
            
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            s[i][j]=s[i-1][j]+s[i][j-1]-s[i-1][j-1]+a[i][j];//求前缀和
            
            
    while(q--)
    {
        int x1,y1,x2,y2;
        scanf("%d %d %d %d",&x1,&y1,&x2,&y2);
        printf("%d\n",s[x2][y2]-s[x2][y1-1]-s[x1-1][y2]+s[x1-1][y1-1]);//算子矩阵的和
    }
    return 0;
}

4.什么是差分

类似于数学中的求导和积分,差分可以看成前缀和的逆运算

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档

5.一维差分

5.1 习题:差分

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档

a数组是b数组的前缀和数组,比如对b数组的b[i]的修改,会影响到a数组中从a[i]及往后的每一个数。

首先让差分b数组中的 b[l] + c ,a数组变成 a[l] + c ,a[l+1] + c,,,,,, ,a[n] + c;

然后我们还需要补充,b[r+1] - c, a数组变成 a[r+1] - c,a[r+2] - c,,,,,,,,a[n] - c;

我们画个图理解一下这个公式的由来:

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int n, m;
int a[N], b[N];
int main()
{
    scanf("%d %d", &n, &m);
    for (int i = 1; i <= n; i++)
    {
        scanf("%d", &a[i]);
        b[i] = a[i] - a[i - 1];//构建差分数组
    }
    int l, r, c;
    while (m--)
    {
        scanf("%d %d %d", &l, &r, &c);
        b[l] += c;//将[l,r]之间的每个数都加上c
        b[r + 1] -= c;
    }
    for (int i = 1; i <= n; i++)
    {
        a[i] = b[i] + a[i - 1];//前缀和运算
        printf("%d ", a[i]);
    }
    return 0;
}

5.2 时间复杂度的分析

如果采用暴力方法,用for循环l到r区间,时间复杂度O(n),如果我们需要对原数组执行m次这样的操作,时间复杂度就会变成O(n*m)。考虑差分做法可极大地降低复杂度。给a数组中的[ l, r]区间中的每一个数都加上c,只需对差分数组b做 b[l] + = c, b[r+1] - = c。时间复杂度为O(1), 大大提高了效率。

6.二维差分

6.1 习题:差分矩阵

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
#include <iostream>
using namespace std;
const int N=1010;
int n,m,q;
int a[N][N],b[N][N];
int main()
{
    scanf("%d %d %d",&n,&m,&q);
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            cin>>a[i][j];
            //同时求二维差分矩阵b,即将前缀和公式移项
            b[i][j]=a[i][j]-a[i-1][j]-a[i][j-1]+a[i-1][j-1];
        }
    }
    while(q--)
    {
        int x1,y1,x2,y2,c;
        cin>>x1>>y1>>x2>>y2>>c;
        //差分数组的模拟
        b[x1][y1]+=c;
        b[x1][y2+1]-=c;
        b[x2+1][y1]-=c;
        b[x2+1][y2+1]+=c;
    }
    
    //根据二维差分数组b去求二维前缀和矩阵a
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            a[i][j]=a[i-1][j]+a[i][j-1]-a[i-1][j-1]+b[i][j];
        }
    }
    
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            printf("%d ",a[i][j]);
        }
        printf("\n");
    }
    return 0;
    
}

6.2 差分矩阵的模拟

假定我们已经构造好了b数组,类比一维差分,我们执行以下操作来使被选中的子矩阵中的每个元素的值加上c:

b[x1][y1] + = c;
b[x1,][y2+1] - = c;
b[x2+1][y1] - = c;
b[x2+1][y2+1] + = c;

每次对b数组执行以上操作,等价于:

for(int i=x1;i<=x2;i++)
  for(int j=y1;j<=y2;j++)
      a[i][j]+=c;

图解过程:文章来源地址https://www.toymoban.com/news/detail-804243.html

一维前缀和时间复杂度,算法,数据结构,Powered by 金山文档
b[x1][ y1 ] +=c ; //让整个a数组中矩形面积的元素都加上了c。
b[x1,][y2+1]-=c ; //让整个a数组中绿色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y1]- =c ; //让整个a数组中紫色矩形面积的元素再减去c,使其内元素不发生改变。
b[x2+1][y2+1]+=c; //让整个a数组中红色矩形面积的元素再加上c,红色内的相当于被减了两次,再加上一次c,才能使其恢复。

到了这里,关于【算法基础】前缀和与差分的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【算法基础】时间复杂度和空间复杂度

    1 算法的评价 2 算法复杂度 2.1 时间复杂度(Time Complexity) 2.1.1 如何计算时间复杂度: 2.1.2 常见的时间复杂度类别与示例 2.2 空间复杂度 2.2.1 如何计算空间复杂度 2.2.2 常见的空间复杂度与示例 3 时间复杂度和空间复杂度计算示例 例子1:计算数组中所有元素的和。 例子2:快

    2024年02月08日
    浏览(58)
  • 算法 时间、空间复杂度的计算(C语言/小白/零基础/新手 + 例题)

    目录 1. 时间复杂度 计算时间复杂度( O(N))的方法:   例1:嵌套循环时间复杂度的计算      例2:双重循环时间复杂度的计算   例3:常熟循环的时间复杂度   例6:冒泡排序的时间复杂度   例7: 二分查找的时间复杂度   例8:斐波那契的时间复杂度         常见的时间

    2024年02月08日
    浏览(42)
  • 【数据结构】初探时间与空间复杂度:算法评估与优化的基础

    🚩 纸上得来终觉浅, 绝知此事要躬行。 🌟主页:June-Frost 🚀专栏:数据结构 🔥该文章主要了解算法的时间复杂度与空间复杂度等相关知识。 📗时间复杂度和空间复杂度是计算机科学中用来评估算法效率的两个重要概念。它们分别描述了算法在执行时间和额外内存使用方

    2024年02月08日
    浏览(45)
  • C/C++ 前缀和与差分

    个人主页:仍有未知等待探索_C语言疑难,数据结构,算法-CSDN博客 专题分栏:算法_仍有未知等待探索的博客-CSDN博客 目录 一、前言 1、什么是前缀和 2、什么是差分 3、优势 1.朴素做法: 2.用差分数组 二、代码实现 1、给一个数组去求其差分数组 2、给一个数组去求其前缀和数

    2024年02月03日
    浏览(38)
  • 【algorithm】认真讲解前缀和与差分 (图文搭配)

    🚀write in front🚀 📝个人主页:认真写博客的夏目浅石. 📣系列专栏:AcWing算法笔记 今天的月色好美 这里介绍以下前缀和算法以及差分算法,用来梳理自己所学到的算法知识。 从我的理解角度来讲:前缀和就是高中数学当中的数列的求和Sn,差分就是前缀和的逆运算,就是

    2024年01月21日
    浏览(41)
  • 算法的时间复杂度和空间复杂度

    目录 本章重点 一 时间复杂度 2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3 常见的时间复杂度的计算 二 空间复杂度 三 常见复杂度对比 四 复杂度的oj练习 4.1 消失的数字 4.2 旋转数字 每一天都是人生限定,每一天都值得100%努力 (1)算法效率(2)时间复杂度(3)空间复

    2024年02月01日
    浏览(51)
  • 算法之【时间复杂度】与【空间复杂度】

    目录 一、算法 1、算法定义 2、两种算法的比较 3、算法的特性 4、算法设计的要求 二、算法的复杂度 1、时间复杂度 1.1定义 1.2大O的渐近表示法 1.3推导大O阶方法 1.4最坏情况与平均情况 1.5常见的时间复杂度计算示例 🍂常数阶: 🍂线性阶:  🍂对数阶: 🍂平方阶: 2、空间

    2024年02月05日
    浏览(62)
  • 算法的时间复杂度与空间复杂度

    1.算法效率 2.时间复杂度 3.空间复杂度 4.复杂度oj题目 1.算法效率 1.1 如何衡量一个算法的好坏 一辆车的好坏我们可以从价格,油耗...... 方面来衡量,但衡量一个算法的好坏我们该从哪一个方面入手呢?比如斐波那契数列: 斐波那契数列的递归实现方式非常简洁,但简洁一定

    2024年02月15日
    浏览(85)
  • 八大排序算法(含时间复杂度、空间复杂度、算法稳定性)

    下列算法默认都是对数组进行升序 1.1、算法思想 插入排序是一种简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。 插入排序的具体步骤如下: 从第一个元素开始,该元素可以认为已经被排序;

    2024年02月08日
    浏览(47)
  • 算法学习22:时间复杂度 和 空间复杂度

    提示:以下是本篇文章正文内容: 😍😍😍文章链接👍👍👍 提示:这里对文章进行总结: 💕💕💕

    2024年04月22日
    浏览(99)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包