深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?

这篇具有很好参考价值的文章主要介绍了深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?

深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?,机器学习,深度学习,机器学习,深度学习,回归,非时间序列回归,回归任务,改进角度,baseline改进

引言

在非时间序列的回归任务中,深度学习和机器学习都是常用的方法。为了进一步提升模型的性能,可以通过改进数据处理、数据增强、特征选择、模型选择、模型正则化与泛化、优化器、学习率、超参数调优等方面,来提升模型的性能和可解释性。

1 数据预处理

提高数据质量和进行恰当的数据预处理对提升模型性能至关重要。

  1. 异常值处理:检测和处理异常值,防止对模型造成影响。
  2. 数据清洗:纠正在数据中的不一致性和错误。
  3. 处理不平衡数据:重采样策略,如SMOTE或随机过/欠采样。
  4. 缺失值处理:填补缺失值或使用模型处理缺失数据。
  5. 数据规范化:归一化或标准化数据。
  6. 数据离散化:对连续变量进行分桶操作。
  7. 特征编码:对类别型特征使用独热编码或标签编码。
  8. 多尺度特征:创建不同尺度的特征表示形式。
  9. 特征构造:创建新特征来增强现有数据集。
  10. 特征交互:考虑特征之间的交互作用。

2 数据集增强

通过生成合成数据或变形现有数据来拓展数据集,使模型能够从更多样的情况中学习。

  1. 数据扩张:人工生成新样本(基于已知样本特征的数据生成技术)。
  2. 过采样:复制少数类样本。
  3. 欠采样:减少多数类样本。
  4. 加权重采样:依据类的不平衡程度加权样本。
  5. 生成对抗网络(GAN):生成新的数据点增强数据集。
  6. 模拟数据生成:使用已知分布生成新数据点。
  7. 多样本合成:融合现有数据点生成新样本。
  8. 自动数据增强:使用算法来自动找到最优的数据增强方式。
  9. 交叉验证数据扩增:在交叉验证的每个循环中使用不同的数据增强。
  10. 引入外部数据集:结合其他资源扩展数据集。

3 特征选择

  1. 相关性分析:采用皮尔逊相关系数、斯皮尔曼等级相关系数等方法筛选与目标变量相关性高的特征。
  2. 主成分分析(PCA):减少维度,保留最有信息的特征分量。
  3. 特征重要性评分:基于树模型(如随机森林、XGBoost)评估特征重要性。
  4. 递归特征消除(RFE):递归减少特征集规模,找到最有影响的特征。
  5. 基于模型的选择:使用L1正则化(Lasso)自动进行特征选择。
  6. 群体方法(Ensemble methods):结合多种特征选择方法的结果。
  7. 互信息和最大信息系数(MIC):选取与目标变量互信息大的特征。
  8. 使用过滤方法:例如方差分析(ANOVA),通过统计测试进行特征选择。
  9. 时间序列特征工程:从日期中提取信息,如月份、星期等。
  10. 地理空间特征:如果数据包含地理信息,可以提取地理空间特征,如人口密度、流动性模式等。

4 模型选择

  1. 线性模型:逻辑回归、岭回归等,作为基线模型。
  2. 决策树:CART、ID3、C4.5作为非线性基准模型。
  3. 集成方法:随机森林、梯度提升机(GBM)、XGBoost、LightGBM、CatBoost等,提高模型的稳定性和准确性。
  4. 支持向量机(SVM):尝试不同的核函数。
  5. 神经网络:深度学习模型,能够捕获复杂非线性关系。
  6. K-最近邻(KNN):调整邻居数量。
  7. 朴素贝叶斯:对条件独立性假设下的快速模型。
  8. 实例学习方法:基于实例的学习可以用于捕捉异常点或进行小样本学习。
  9. 混合模型或堆叠(Stacking):结合多个不同的模型的预测以提高准确率。

5 模型正则化与泛化

正则化技术可以减少过拟合,提升模型的泛化能力。

  1. L1/L2正则化:加入惩罚项限制模型复杂度。
  2. 早停法(Early Stopping):防止训练过度。
  3. 丢弃法(Dropout):神经网络中随机丢弃节点以增加鲁棒性。
  4. 集成学习:多模型集成平均预测。
  5. 交叉验证:更可靠地评估模型表现。
  6. 堆叠通用化(Stacking Generalization):模型的堆叠组合。
  7. 引导聚合(Bagging):减少方差,如随机森林。
  8. 梯度提升:如GBM、XGBoost,增加模型鲁棒性。
  9. 噪声鲁棒性:对输入添加噪声以提高鲁棒性。
  10. 模型蒸馏(Knowledge Distillation):从复杂模型到简单模型的知识转移。

6 优化器

pytorch手册:https://pytorch.org/docs/stable/optim.html

  1. 梯度下降(GD):基础的优化算法。
  2. 随机梯度下降(SGD):每次更新只使用一个样本,速度快。
  3. 批量梯度下降(BGD):每次更新使用全部样本,稳定性好。
  4. 动量(Momentum):加速SGD在相关方向上前进,抑制震荡。
  5. Adagrad:自适应学习率优化算法。
  6. RMSprop:解决Adagrad学习率急剧下降问题。
  7. Adam:结合了RMSprop和Momentum的优点。
  8. AdaDelta:改进的Adagrad以防止学习率过早下降。
  9. Nesterov 加速梯度(NAG):提前调整梯度方向以增加速度。
  10. AdamW:在Adam的基础上加入权重衰减,提高模型泛化能力。

7 学习率

学习率的调整对模型训练效果影响巨大,以下是一些调整学习率的方法:

  1. 固定学习率:最基本的策略,全程使用固定学习率。
  2. 按时间衰减:随着迭代次数增加,学习率逐渐减小。
  3. 步长衰减:每隔一定的epoch,学习率衰减一次。
  4. 指数衰减:学习率按指数函数衰减。
  5. 自适应学习率:根据模型在训练集上的表现来动态调整学习率。
  6. 余弦退火(Cosine Annealing):周期性调整学习率的一种策略。
  7. 线性预热(Warm-up):先小学习率预热,逐渐增加到正常值。
  8. 周期性学习率:学习率在较高值和较低值之间周期性变动。
  9. 学习率范围测试:快速地迭代多个学习率以找到最好的范围。
  10. 使用学习率查找算法:例如学习率查找器,快速找到适合当前数据集的学习率。

8 超参数调优

通过调整模型超参数来优化模型表现。

  1. 网格搜索:系统性地遍历多种超参数的组合。
  2. 随机搜索:在超参数空间中随机搜索。
  3. 贝叶斯优化:基于贝叶斯模型的优化方法。
  4. 基于遗传算法的优化:模拟自然选择过程来选择超参数。
  5. 模拟退火:启发式搜索技术,优化复杂空间中的超参数选择。
  6. 超参数空间约减:通过预先分析减少搜索空间的范围。
  7. 自动化机器学习(AutoML):自动化超参数的选择和模型的训练。
  8. 超参数重要性分析:分析各个超参数对模型表现的影响大小。
  9. 进化算法:利用进化策略寻找最佳超参数。
  10. 零成本代理指标:使用低成本指标来预测较高成本指标的表现。

9 性能评估与模型解释

了解模型在哪些方面表现良好或不足,可以进一步改进模型。文章来源地址https://www.toymoban.com/news/detail-804373.html

  1. 混淆矩阵分析:查看模型在不同类别的预测性能。
  2. ROC曲线与AUC:评估模型的区分能力。
  3. 精度-召回曲线:了解精度与召回率的权衡关系。
  4. Brier分数:评估概率预测的准确性。
  5. 查看模型权重:分析特征权重对结果的影响。
  6. SHAP值:解释模型的预测以关联特征的重要性。
  7. 部分依赖图(Partial Dependence Plots):可视化特征影响。
  8. 局部可解释模型的敏感性分析(LIME):解释单个预测结果。
  9. 累积增益图和提升图:分析营销策略效果。
  10. 泛化误差分析:分析模型在新数据上的预测性能。

到了这里,关于深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 时间序列预测模型实战案例(三)(LSTM)(Python)(深度学习)时间序列预测(包括运行代码以及代码讲解)

    目录 引言 LSTM的预测效果图 LSTM机制 了解LSTM的结构 忘记门 输入门 输出门 LSTM的变体 只有忘记门的LSTM单元 独立循环(IndRNN)单元 双向RNN结构(LSTM) 运行代码 代码讲解 LSTM(Long Short-Term Memory)是一种常用的循环神经网络(RNN)模型,用于处理序列数据,具有记忆长短期的能力。

    2024年02月08日
    浏览(85)
  • 机器学习-使用 XGBoost 时间序列预测能源消耗

    简而言之,时间序列预测是根据以前的历史数据预测未来值的过程。目前使用时间序列预测的最热门领域之一是加密货币市场,人们希望预测比特币或以太坊等流行加密货币的价格在未来几天甚至更长时间内将如何波动。另一个现实世界的案例是能源消耗预测。尤其是在能源

    2024年02月11日
    浏览(48)
  • 机器学习多步时间序列预测解决方案

    近年来,随着机器学习与深度学习的发展机器学习平台的成熟,数据科学家们不再需要关心底层的基础设施及构建复杂的训练与推理环境,从而可以把主要的时间与精力放在数据与算法本身。在机器学习变得更容易的今天,越来越多的传统行业已经开始使用机器学习算法来解

    2024年02月10日
    浏览(52)
  • 基于LSTM深度学习网络的时间序列分析matlab仿真

    目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程   matlab2022a        LSTM是一种循环神经网络(RNN)的变体,专门设计用于处理序列数据。LSTM网络通过记忆单元和门控机制来捕捉时间序列中的长期依赖关系,避免了传统RNN中

    2024年02月12日
    浏览(56)
  • 【关于时间序列的ML】项目 5 :用机器学习预测天气

      🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​ 📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】 ​​  🖍foreword

    2023年04月21日
    浏览(39)
  • 【关于时间序列的ML】项目 3 :基于机器学习的地震预测模型

      🔎大家好,我是Sonhhxg_柒,希望你看完之后,能对你有所帮助,不足请指正!共同学习交流🔎 📝个人主页-Sonhhxg_柒的博客_CSDN博客 📃 🎁欢迎各位→点赞👍 + 收藏⭐️ + 留言📝​ 📣系列专栏 - 机器学习【ML】 自然语言处理【NLP】  深度学习【DL】 ​​  🖍foreword

    2024年02月02日
    浏览(53)
  • 【AI底层逻辑】——篇章5(下):机器学习算法之聚类&降维&时间序列

    续上: 目录 4、聚类 5、降维 6、时间序列 三、无完美算法  往期精彩: 聚类即把相似的东西归在一起, 与 分类 不同的是#

    2024年02月15日
    浏览(42)
  • tcn 时间序列回归实例

    目录 时间卷积,输入是多张灰度图: torch-tcn库 示例代码 自定义实现tcn层

    2024年02月05日
    浏览(43)
  • 时间序列预测模型实战案例(四)(Xgboost)(Python)(机器学习)图解机制原理实现时间序列预测和分类(附一键运行代码资源下载和代码讲解)

    目录图解机制原理 简介 Xgboost预测精度 实验一(回归) 实验二(分类) Xgboost的数学机制原理 图解Xgboost运行机制原理  决策树 决策树结构图 Xgboost Xgboost的机制原理 贪心算法 Xgboost总结 数据格式需求 Xgboost运行代码 Xgboost时间序列预测及代码 Xgboost分类任务及代码 Xgboost运行资源下

    2024年02月03日
    浏览(83)
  • 时间序列预测 | Matlab自回归差分移动平均模型ARIMA时间序列预测

    效果一览 文章概述 时间序列预测 | Matlab自回归差分移动平均模型ARIMA时间序列预测,单列数据输入模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 部分源码

    2024年02月13日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包