查看神经网络中间层特征矩阵及卷积核参数

这篇具有很好参考价值的文章主要介绍了查看神经网络中间层特征矩阵及卷积核参数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

可视化feature maps以及kernel weights,使用alexnet模型进行演示。

1. 查看中间层特征矩阵

alexnet模型,修改了向前传播

import torch
from torch import nn
from torch.nn import functional as F

# 对花图像数据进行分类
class AlexNet(nn.Module):
    def __init__(self,num_classes=1000,init_weights=False, *args, **kwargs) -> None:
        super().__init__(*args, **kwargs)
        self.conv1 = nn.Conv2d(3,48,11,4,2)
        self.pool1 = nn.MaxPool2d(3,2)
        self.conv2 = nn.Conv2d(48,128,5,padding=2)
        self.pool2 = nn.MaxPool2d(3,2)
        self.conv3 = nn.Conv2d(128,192,3,padding=1)
        self.conv4 = nn.Conv2d(192,192,3,padding=1)
        self.conv5 = nn.Conv2d(192,128,3,padding=1)
        self.pool3 = nn.MaxPool2d(3,2)

        self.fc1 = nn.Linear(128*6*6,2048)
        self.fc2 = nn.Linear(2048,2048)
        self.fc3 = nn.Linear(2048,num_classes)
        # 是否进行初始化
        # 其实我们并不需要对其进行初始化,因为在pytorch中,对我们对卷积及全连接层,自动使用了凯明初始化方法进行了初始化
        if init_weights:
            self._initialize_weights()

    def forward(self,x):
        outputs = []  # 定义一个列表,返回我们要查看的哪一层的输出特征矩阵
        x = self.conv1(x)
        outputs.append(x)
        x = self.pool1(F.relu(x,inplace=True))
        x = self.conv2(x)
        outputs.append(x)
        x = self.pool2(F.relu(x,inplace=True))
        x = self.conv3(x)
        outputs.append(x)
        x = F.relu(x,inplace=True)
        x = F.relu(self.conv4(x),inplace=True)
        x = self.pool3(F.relu(self.conv5(x),inplace=True))
        x = x.view(-1,128*6*6)
        x = F.dropout(x,p=0.5)
        x = F.relu(self.fc1(x),inplace=True)
        x = F.dropout(x,p=0.5)
        x = F.relu(self.fc2(x),inplace=True)
        x = self.fc3(x)

        # for name,module in self.named_children():
        #     x = module(x)
        #     if name == ["conv1","conv2","conv3"]:
        #         outputs.append(x)
        return outputs

    # 初始化权重
    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m,nn.Conv2d):
                # 凯明初始化 - 何凯明
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m,nn.Linear):
                nn.init.normal_(m.weight, 0,0.01)  # 使用正态分布给权重赋值进行初始化
                nn.init.constant_(m.bias,0)

拿到向前传播的结果,对特征图进行可视化,这里,我们使用训练好的模型,直接加载模型参数。

注意,要使用与训练时相同的数据预处理。

import matplotlib.pyplot as plt
from torchvision import transforms
import alexnet_model
import torch
from PIL import Image
import numpy as np
from alexnet_model import AlexNet

# AlexNet 数据预处理
transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
# 实例化模型
model = AlexNet(num_classes=5)
weights = torch.load("./alexnet_weight_20.pth", map_location="cpu")
model.load_state_dict(weights)

image = Image.open("./images/yjx.jpg")
image = transform(image)
image = image.unsqueeze(0)

with torch.no_grad():
    output = model(image)

for feature_map in output:
    # (N,C,W,H) -> (C,W,H)
    im = np.squeeze(feature_map.detach().numpy())
    # (C,W,H) -> (W,H,C)
    im = np.transpose(im,[1,2,0])
    plt.figure()
    # 展示当前层的前12个通道
    for i in range(12):
        ax = plt.subplot(3,4,i+1) # i+1: 每个图的索引
        plt.imshow(im[:,:,i],cmap='gray')
    plt.show()

结果:

查看神经网络中间层特征矩阵及卷积核参数,神经网络,矩阵,人工智能


2. 查看卷积核参数

import matplotlib.pyplot as plt
import numpy as np
import torch

from AlexNet.model import AlexNet

# 实例化模型
model = AlexNet(num_classes=5)
weights = torch.load("./alexnet_weight_20.pth", map_location="cpu")
model.load_state_dict(weights)

weights_keys = model.state_dict().keys()
for key in weights_keys:
    if "num_batches_tracked" in key:
        continue
    weight_t = model.state_dict()[key].numpy()
    weight_mean = weight_t.mean()
    weight_std = weight_t.std(ddof=1)
    weight_min = weight_t.min()
    weight_max = weight_t.max()
    print("mean is {}, std is {}, min is {}, max is {}".format(weight_mean, weight_std, weight_min, weight_max))

    weight_vec = np.reshape(weight_t,[-1])
    plt.hist(weight_vec,bins=50)
    plt.title(key)
    plt.show()

结果:

查看神经网络中间层特征矩阵及卷积核参数,神经网络,矩阵,人工智能文章来源地址https://www.toymoban.com/news/detail-804579.html

到了这里,关于查看神经网络中间层特征矩阵及卷积核参数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【设计模式之美】重构(三)之解耦方法论:如何通过封装、抽象、模块化、中间层等解耦代码?

    重构可以分为大规模高层重构(简称“大型重构”)和小规模低层次重构(简称“小型重构”)。 通过解耦对代码重构,就是保证代码不至于复杂到无法控制的有效手段。   代码是否需要“解耦”? 看修改代码会不会牵一发而动全身。 依赖关系是否复杂 把模块与模块之间

    2024年01月16日
    浏览(54)
  • 卷积神经网络提取图像特征的操作是怎样完成的

    。 卷积神经网络有以下几种应用可供研究:1、基于卷积网络的形状识别物体的形状是人的视觉系统分析和识别物体的基础,几何形状是物体的本质特征的表现,并具有平移、缩放和旋转不变等特点,所以在模式识别领域,对于形状的分析和识别具有十分重要的意义,而二维

    2024年02月07日
    浏览(44)
  • SENet: 强化深度卷积神经网络的自适应特征学习

    SENet(Squeeze-and-Excitation Network)是一种革命性的深度卷积神经网络架构,旨在提高模型对图像特征的建模能力。它引入了自适应特征重新校准机制,通过学习性地调整通道间的重要性,提高了模型的性能,广泛用于图像分类、目标检测、图像分割等计算机视觉任务。 在深度学

    2024年02月08日
    浏览(40)
  • 【使用 k 折叠交叉验证的卷积神经网络(CNN)】基于卷积神经网络的无特征EMG模式识别研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 文献来源

    2024年02月11日
    浏览(43)
  • 每天五分钟计算机视觉:使用神经网络完成人脸的特征点检测

    我们上一节课程中学习了如何利用神经网络对图片中的对象进行定位,也就是通过输出四个参数值bx、by、bℎ和bw给出图片中对象的边界框。 本节课程我们学习 特征点的检测 ,神经网络可以通过输出图片中对象的特征点的(x,y)坐标来实现对目标特征的识别, 我们看几个例子

    2024年04月17日
    浏览(97)
  • 【语音识别】BP神经网络语音特征信号分类【含Matlab源码 2338期】

    获取代码方式1: 完整代码已上传我的资源:【语音识别】基于matlab BP神经网络语音特征信号分类【含Matlab源码 2338期】 点击上面蓝色字体,直接付费下载,即可。 获取代码方式2: 付费专栏Matlab语音处理(初级版) 备注: 点击上面蓝色字体 付费专栏Matlab语音处理(初级版

    2024年02月21日
    浏览(47)
  • 神经网络卷积反卷积及池化计算公式、特征图通道数(维度)变化实例

    卷积神经网络,要特别注意输入图像的尺寸,如果想套用某个网络结构,需要先通过网络结构计算出输入图像尺寸,将自己的图像调整为所需要的尺寸;也可以根据自己的图像尺寸适当调整网络结构。以下是具体操作方法。 目录 一,要想计算图像尺寸,先要了解基础卷积等

    2024年02月03日
    浏览(41)
  • 卷积神经网络中的图像特征——以YOLOv5为例进行可视化

    一、图像特征 1. 图像低层特征 图像低层特征指的是:边缘、颜色和纹理等特征。 低层特征的分辨率较高,包含较多的位置、细节信息,但其包含的语义信息较少,噪声较多。 原始图像和浅层卷积网络输出的特征图属于低层特征,从低层特征图中可以看清轮廓、边缘等信息。

    2024年02月05日
    浏览(42)
  • 【Python】【Torch】神经网络中各层输出的特征图可视化详解和示例

    本文对神经网络各层特征图可视化的过程进行运行示例,方便大家使用,有助于更好的理解深度学习的过程,尤其是每层的结果。 神经网络各层特征图可视化的好处和特点如下: 可视化过程可以了解网络对图像像素的权重分布,可以了解网络对图像特征的提取过程,还可以

    2024年02月04日
    浏览(48)
  • 计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程

    大家好,我是微学AI,今天给大家介绍一下计算机视觉的应用12-卷积神经网络中图像特征提取的可视化研究,让大家理解特征提取的全过程。 要理解卷积神经网络中图像特征提取的全过程,我们可以将其比喻为人脑对视觉信息的处理过程。就像我们看到一个物体时,大脑会通

    2024年02月10日
    浏览(46)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包