TCP高并发服务器简介(select、poll、epoll实现与区别)

这篇具有很好参考价值的文章主要介绍了TCP高并发服务器简介(select、poll、epoll实现与区别)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

select、poll、epoll三者的实现:

select实现TCP高并发服务器的流程:

  • 一、创建套接字(socket函数):
  • 二、填充服务器的网络信息结构体:
  • 三、套接字和服务器的网络信息结构体进行绑定(bind函数):
  • 四、套接字设置成被动监听(listen函数):
  • 五、创建要监听的文件描述符集合:
  • 使用select函数后,会将没有就绪的文件描述符在集合中去除,所以需要创建两个文件描述符集合,一个是母本read_fds,类似于常量,保持不变,而另一个作为副本read_fds_t,类似于变量,可以改变;
	fd_set read_fds;
    FD_ZERO(&read_fds);
    fd_set read_fds_t;
    FD_ZERO(&read_fds_t);
  • 六、把创建的套接字添加到要监视的集合中:
	FD_SET(sockfd,&read_fds);
    int fd_max = 0;
    fd_max = fd_max > sockfd ? fd_max : sockfd;
  • 七、设置系统时间结构体变量,用来指定超时的时间:
	struct timeval tm_out;
  • 八、等待文件描述符中的事件是否就绪,成功则返回就绪的文件描述符的个数(select函数):
  • select函数:
	#include <sys/select.h>
	int select(int nfds, fd_set *readfds, fd_set *writefds,
                fd_set *exceptfds, struct timeval *timeout);
    /*
	参数:
		nfds:		要监视的最大文件描述符+1
	
		readfds:	要监视的读文件描述符集合 不关心可以传NULL
	
		writefds:	要监视的写文件描述符集合 不关心可以传NULL
	
		exceptfds:	要监视的异常文件描述符集合 不关心可以传NULL
	
		timeout:	超时时间 如果设置成NULL 会一直阻塞 直到有文件描述符就绪
					
	返回值:
	
		成功 就绪的文件描述符的个数
	
		超时 0
	
		失败 -1 重置错误码
	 */
	 				//struct timeval  可以指定超时时间

				    //如果结构体的两个成员都为0 表示非阻塞
				    
				    struct timeval {
				        long    tv_sec;         //秒 
				        long    tv_usec;       //微秒
				    };
				    
		void FD_CLR(int fd, fd_set *set);	//将文件描述符在集合中删除
		
		int  FD_ISSET(int fd, fd_set *set);	//判断文件描述符是否还在集合中
							// 返回0 表示不在了 非0 表示在
		void FD_SET(int fd, fd_set *set);	//向集合中添加一个文件描述符
		
		void FD_ZERO(fd_set *set);			//清空集合

		if(-1 == (ret = select(fd_max + 1,&read_fds_t,NULL,NULL,&tm_out)))
        {
            perror("select error");
            exit(-1);
        }
        else if(0 == ret)
        {
            puts("timeout!!!!!");
            putchar('\n');
            continue;
        }
  • 九、遍历文件描述符集合,判断哪些文件描述符已经准备就绪:
		for(int i = 3; i < fd_max + 1 && 0 != ret; i++)
        {
				...
		}
  • 十、判断文件描述符是否还在集合中,并且接收来自客户端的数据(recv函数)和给客户端发送应答消息(send函数):
            if(FD_ISSET(i,&read_fds_t))
            {
                //说明有新的客户端连接服务器
                if(i == sockfd)
                {   
                    
                    if(-1 == (accept_fd = accept(sockfd,NULL,NULL)))
                    {
                        perror("accept error");
                        exit(-1);
                    
                    }

                    printf("客户端[%d]连接到服务器\n",accept_fd);

                    //将新连接的客户端的套接字添加到要监视的集合中
                    FD_SET(accept_fd,&read_fds);

                    fd_max = fd_max > accept_fd ? fd_max : accept_fd;
                }
                else //之前连接的客户端在向服务器发送信息
                {

                    memset(buf,0,sizeof(buf));
                    if(-1 == (nbytes = recv(i,buf,sizeof(buf),0)))
                    {
                        perror("recv error");
                        exit(-1);
                    }
                    else if(0 == nbytes)
                    {
                        printf("客户端[%d]已断开连接\n",i);

                        //将已断开连接客户端的套接字在文件描述符集合中剔除
                        FD_CLR(i,&read_fds);

                        //关闭套接字
                        close(i);
                        continue;
                    }
                    if(!strncmp(buf,"quit",4))
                    {
                        printf("客户端[%d]已退出\n",i);
                        //将已断开连接客户端的套接字在文件描述符集合中剔除
                        FD_CLR(i,&read_fds);

                        //关闭套接字
                        close(i);
                        continue;
                    }
                    printf("客户端[%d]发来信息[%s]\n",i,buf);

                    //组装应答消息
                    strcat(buf,"----------k");

                    //给客户端发送应答消息
                    if(-1 == send(i,buf,sizeof(buf),0))
                    {
                        perror("send error");
                        exit(-1);
                    }

                }
                ret--; //减少遍历次数
                
            }
  • 十一、关闭套接字(close函数):

poll实现TCP高并发服务器的流程:

  • 一、创建套接字(socket函数):
  • 二、填充服务器的网络信息结构体:
  • 三、套接字和服务器的网络信息结构体进行绑定(bind函数):
  • 四、套接字设置成被动监听(listen函数):
  • 五、创建要监听的文件描述符集合并清空文件描述符集合:
	//创建要监听的文件描述符集合
    struct pollfd new_fds[2048] = {0};
    
    //清空文件描述符集合
    for(int i = 0; i < 2048; ++i)
    {
        new_fds[i].fd = -1;
    }
  • 六、把创建的套接字添加到要监视的集合中:
	FD_SET(sockfd,&read_fds);
    int fd_max = 0;
    fd_max = fd_max > sockfd ? fd_max : sockfd;
  • 七、套接字添加到要监视的集合中,并且设置要监听的事件:
	//套接字添加到要监视的集合中
    new_fds[0].fd = sockfd;

    //设置要监听的事件
    new_fds[0].events |= POLLIN;
  • 八、记录文件描述符集合中最大的文件描述符,并且设置超时的时间:
	//记录文件描述符集合中最大的文件描述符
    int fd_max = 0;
    fd_max = fd_max > sockfd ? fd_max : sockfd;

    //设置超时的时间
    int tm_out = 10000;
  • 九、等待文件描述符中的事件是否就绪,成功则返回就绪的文件描述符的个数(poll函数):
  • poll实现TCP中型并发服务器select实现TCP小型并发服务器区别就是无需每次重置集合,并且可以设置要监视的最大文件描述符的个数,而select至多监视1024个文件描述符
  • poll函数:
	#include <poll.h>
	int poll(struct pollfd *fds, nfds_t nfds, int timeout);
	/*
	参数:
	
		fds:要监视的文件描述符的集合指向自定义的结构体数据
		
		nfds:fds中已经使用的项目的个数
		
		timeout:超时时间单位是毫秒  
		
				设置成10000 表示10s
				
				-1	永久阻塞
				
				0	非阻塞
	返回值:
	
		0		超时
		-1		出错 重置错误码
		正数	成功 返回的就绪的文件描述符的个数
	*/
			struct pollfd {
			   int   fd;         /* 文件描述符 设置成-1 内核就不再监视这一位了*/
			   short events;     /* 要监视的事件 */
			   short revents;    /* 返回的事件 */
			};
			/*
			要监视的事件是用位运算或起来的
			
			要监视的事件放在events字段,而实际就绪的事件在revents字段返回
			
			POLLIN	读事件
			
			POLLOUT	写时间
			
			POLLERR	异常事件
			*/

		if(-1 == (ret = poll(new_fds,fd_max,tm_out)))
        {
            perror("poll error");
            exit(-1);
        }
        else if(0 == ret)
        {
            puts("timeout!!!!!");
            putchar('\n');
            continue;
        }
  • 十、遍历文件描述符集合,判断哪些文件描述符已经准备就绪:
		for(k = 0; k <= fd_max && ret != 0; ++k)
        {   
				...
		}
  • 十一、找到实际就绪的事件的文件描述符,并且接收来自客户端的数据(recv函数)和给客户端发送应答消息(send函数):
           //找到实际就绪的事件的文件描述符
            if(0 != (new_fds[k].revents & POLLIN))
            {
                //说明有新的客户端连接服务器
                if(new_fds[k].fd == sockfd)
                {
                    if(-1 == (accept_fd = accept(sockfd,NULL,NULL)))
                    {
                        perror("accept error");
                        exit(-1);
                    
                    }

                    printf("客户端[%d]连接到服务器\n",accept_fd);

                    //将新连接的客户端的套接字添加到要监视的集合中

                    //遍历文件描述符集合,给新的文件描述符找一个位置
                    for(j = 0; j < 2048; j++)
                    {
                        if(-1 == new_fds[j].fd)
                        {
                            new_fds[j].fd = accept_fd;
                            new_fds[j].events |= POLLIN;

                            fd_max = fd_max > accept_fd ? fd_max : accept_fd;
                            break;
                        }
                    }
                    if(2048 == j)
                    {
                        //此时集合容量满了
                        close(accept_fd);
                    }
                    

                }
                else //之前连接的客户端在向服务器发送信息
                {

                    memset(buf,0,sizeof(buf));
                    if(-1 == (nbytes = recv(new_fds[k].fd,buf,sizeof(buf),0)))
                    {
                        perror("recv error");
                        exit(-1);
                    }
                    else if(0 == nbytes)
                    {
                        printf("客户端[%d]已断开连接\n",new_fds[k].fd);

                        //将已断开连接客户端的套接字在文件描述符集合中剔除
                        close(new_fds[k].fd);
                        new_fds[k].fd = -1;
                        continue;
                    }
                    if(!strncmp(buf,"quit",4))
                    {
                        printf("客户端[%d]已退出\n",new_fds[k].fd);
                        //将已断开连接客户端的套接字在文件描述符集合中剔除
                        close(new_fds[k].fd);
                        new_fds[k].fd = -1;
                        continue;
                    }
                    printf("客户端[%d]发来信息[%s]\n",new_fds[k].fd,buf);

                    //组装应答消息
                    strcat(buf,"----------k");

                    //给客户端发送应答消息
                    if(-1 == send(new_fds[k].fd,buf,sizeof(buf),0))
                    {
                        perror("send error");
                        exit(-1);
                    }

                }
                ret--; //减少遍历次数
            }
  • 十二、关闭套接字(close函数):

epoll实现TCP高并发服务器的流程:

  • 一、创建套接字(socket函数):
  • 通信域选择IPV4网络协议、套接字类型选择流式
	int sock_fd = socket(AF_INET,SOCK_STREAM,0); //通信域选择IPV4、套接字类型选择流式
  • 二、填充服务器和客户机的网络信息结构体:
  • 1.分别定义服务器网络信息结构体变量serveraddr和客户机网络信息结构体变量clientaddr
  • 2.分别求出服务器和客户机的网络信息结构体变量的内存空间大小,以作备用;
  • 3.网络信息结构体清0
  • 4.使用IPV4网络协议AF_INET
  • 5.在终端预留服务器端主机的IP地址inet_addr(argv[1])
  • 6.在终端预留服务器端网络字节序的端口号htons(atoi(argv[2]))
	struct sockaddr_in serveraddr; //定义服务器网络信息结构体变量
	struct sockaddr_in clientaddr;
    socklen_t serveraddr_len = sizeof(serveraddr);//求出服务器结构体变量的内存空间大小
    socklen_t clientaddr_len = sizeof(clientaddr);//求出客户机结构体变量的内存空间大小

    memset(&serveraddr,0,serveraddr_len); //服务器结构体清零
    memset(&clientaddr,0,clientaddr_len);//客户机结构体清零

    serveraddr.sin_family = AF_INET;  //使用IPV4网络协议
    serveraddr.sin_addr.s_addr = inet_addr(argv[1]);  //IP地址
    serveraddr.sin_port = htons(atoi(argv[2]));//网络字节序的端口号
  • 三、设置允许端口复用(setsockopt函数):
  • setsockopt函数:
  • 功能:设置套接字属性;

	#include <sys/types.h>
	#include <sys/socket.h>

	int setsockopt(int sockfd, int level, int optname,
	const void *optval, socklen_t optlen);	
	/*
	参数:
	
		sockfd:套接字
		level:	选项的级别
	
			套接字API级别		SOL_SOCKET
	
			TCP级别			IPPROTO_TCP
	
			IP级别			IPPROTO_IP
	
		optname:选项的名字
	
			套接字API级别
	
				SO_BROADCAST	是否允许发送广播
	
				SO_RCVBUF		接收缓冲区的大小
	
				SO_SNDBUF		发送缓冲区的大小
	
				SO_RCVTIMEO		接收超时时间
					参数使用的是 struct timeval 结构体
					如果超时了 函数调用会立即返回-1
					并将错误码置成 EAGAIN
	
				SO_SNDTIMEO			发送超时时间
	
				SO_REUSEADDR		端口复用
	
			TCP级别
	
				TCP_NODELAY		使能/禁用Nagle算法
	
			IP级别
	
				IP_ADD_MEMBERSHIP	设置加入多播组
	
		optval:	选项的值
	
			没有特殊说明时 使用的都是int类型
	
		optlen:optval的大小
	
	返回值:
	
		成功 	0
	
		失败 	-1 	重置错误码
	*/
  • 特别注意:
  • 使用setsockopt设置允许端口复用时,其在代码的位置在填充网络信息结构体和bind之间;
	int reuse = 1;
    if(-1 == (setsockopt(sock_fd,SOL_SOCKET,SO_REUSEADDR,&reuse,sizeof(reuse))))
    {
        perror("setsockopt error");
        exit(-1);
    }
  • 四、套接字和服务器的网络信息结构体进行绑定(bind函数):

  • 五、套接字设置成被动监听(listen函数):

  • 六、创建红黑树(epoll_create函数):

	#include <sys/epoll.h>
	int epoll_create(int size);
	/*
	功能:
		
		创建epoll/创建epoll实例的描述符
	
	参数:
	
	    size:参数已经被忽略了,只需要填写大于0的值即可
	
	返回值:

        epoll_create 调用成功时会返回一个非负整数epfd,
    
        表示新创建的 epoll 实例的文件描述符,
    
        如果调用失败则返回 -1,并设置 errno 变量以指示具体错误原因
     */
	int epfd = epoll_create(1);
    if(-1 == epfd)
    {
        perror("epoll_create error");
        exit(-1);

    }
  • 七、定义事件结构体变量和存放就绪事件描述符的数组:
  • 事件结构体epoll_event用于描述一个文件描述符上的事件;
			typedef union epoll_data {
               void        *ptr;
               int          fd;  
               uint32_t     u32;
               uint64_t     u64;
           } epoll_data_t;   
           struct epoll_event {
               uint32_t     events;      //EPOLLIN 读 / EPOLLOUT 写
               epoll_data_t data;        //存放用户的数据
           };    

    struct epoll_event event;
    struct epoll_event events[N];
  • 八、将关心的文件描述符加入到红黑树(epoll_ctl函数):
  • 功能:epoll的控制操作或者用于向 epoll 实例中添加、修改、删除事件;
  • epoll_ctl函数:
	int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
	/*
	参数:
	         epfd:epoll的文件描述符
	
	         op:控制方式
	
	            EPOLL_CTL_ADD:添加
	
	            EPOLL_CTL_MOD:修改
	
	            EPOLL_CTL_DEL:删除
	
	         fd:被操作的文件描述符
	
	         event:(事件)结构体指针
	          
	
	返回值:    
				成功返回0,
	
	            失败返回-1 置位错误码
	 */
	//添加要检测事件的描述符
    event.events = EPOLLIN;

    event.data.fd = sock_fd;

    //将关心的文件描述符加入到红黑树
    if(-1 == (epoll_ctl(epfd,EPOLL_CTL_ADD,sock_fd,&event)))
    {
        perror("epoll_ctl error");
        exit(-1);

    }
  • 九、等待文件描述符中的事件是否就绪,成功则返回就绪的文件描述符的个数(epoll_wait函数):
  • epoll_wait函数:
	int epoll_wait(int epfd, struct epoll_event *events,int maxevents, int timeout);
	/*
	参数:

		    epfd:epoll的文件描述符
		
		    events:准备好的事件的结构体地址
		
		    maxevents:返回的最大的文件描述符的个数
		
		    timeout:超时
		
		        >0 :毫秒级别的超时时间
		
		        =0 :立即返回
		
		        =-1:不关心超时时间
	返回值:
	
		     成功返回准备好的文件描述符的个数
		
		     返回0代表超时时间到了
		
		     失败返回-1置位错误码
	*/
		if(-1 == (ret = epoll_wait(epfd,events,N,-1)))
        {
            perror("epoll_wait error");
            exit(-1);
        }	
  • 十、遍历就绪的文件描述符集,判断哪些文件描述符已经准备就绪:
		for(int i = 0; i < ret; ++i)
        {
        	...
        }
  • 十一、找到实际就绪的事件的文件描述符,并且接收来自客户端的数据(recv函数)和给客户端发送应答消息(send函数):
			if(events[i].data.fd == sock_fd)
            {
                //获取连接成功后新的客户端
                new_fd = accept(sock_fd,(struct sockaddr *)&clientaddr,&clientaddr_len);
                if(-1 == new_fd)
                {
                    perror("accept error");
                    exit(-1);
                }
                printf("文件描述符[%d]客户端[%s:%d]连接到了服务器\n",new_fd,inet_ntoa(clientaddr.sin_addr),ntohs(clientaddr.sin_port));
                //添加要检测的文件描述符
                event.events = EPOLLIN;
                event.data.fd = new_fd;
                if(-1 == (epoll_ctl(epfd,EPOLL_CTL_ADD,new_fd,&event)))
                {
                    perror("epoll_ctl error");
                    exit(-1);

                }
                printf("文件描述符[%d]成功挂载在红黑树上\n",new_fd);
            }
            else
            {
                memset(buf,0,sizeof(buf));
                int old_fd = events[i].data.fd;
                if(-1 == (nbytes = recv(old_fd,buf,sizeof(buf),0)))
                {
                    perror("recv error");
                    exit(-1);
                }
                else if(0 == nbytes)
                {
                    printf("文件描述符[%d]客户端断开了服务器\n",old_fd);

                    //关闭对应的文件描述符
                    close(old_fd);
                    //剔除挂在树上对应的文件描述符
                    epoll_ctl(epfd,EPOLL_CTL_DEL,old_fd,&event);

                }
                if(!strncmp(buf,"quit",4))
                {
                    printf("文件描述符[%d]客户端退出了服务器\n",old_fd);
                    //关闭对应的文件描述符
                    close(old_fd);
                    //剔除挂在树上对应的文件描述符
                    epoll_ctl(epfd,EPOLL_CTL_DEL,old_fd,&event);
                }
                printf("文件描述符[%d]客户端发来数据[%s]\n",old_fd,buf);

                //组装应答消息
                strcat(buf,"-----k");

                //给客户端发送应答消息
                send(old_fd,buf,sizeof(buf),0); 
  • 十二、关闭套接字(close函数):

select、poll、epoll三者的区别:

TCP高并发服务器简介(select、poll、epoll实现与区别),C/S架构学习系列,编程基础,tcp/ip,服务器,php文章来源地址https://www.toymoban.com/news/detail-804858.html

到了这里,关于TCP高并发服务器简介(select、poll、epoll实现与区别)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Linux网络编程:多路I/O转接服务器(select poll epoll)

    文章目录: 一:select 1.基础API  select函数 思路分析 select优缺点 2.server.c 3.client.c 二:poll 1.基础API  poll函数  poll优缺点 read函数返回值 突破1024 文件描述符限制 2.server.c 3.client.c 三:epoll 1.基础API epoll_create创建   epoll_ctl操作  epoll_wait阻塞 epoll实现多路IO转接思路 epoll优缺点

    2024年02月11日
    浏览(53)
  • IO多路复用中select的TCP服务器模型和poll服务模型

    服务器端 客户端 poll客户端

    2024年02月12日
    浏览(51)
  • C/S架构学习之使用epoll实现TCP特大型并发服务器

    epoll实现TCP特大型并发服务器的流程: 一、创建套接字(socket函数): 通信域 选择 IPV4 网络协议、套接字类型选择 流式 ; 二、填充服务器和客户机的网络信息结构体: 1.分别定义服务器网络信息结构体变量 serveraddr 和客户机网络信息结构体变量 clientaddr ; 2.分别求出服务

    2024年02月08日
    浏览(51)
  • 使用select实现TCP并发服务器模型

    本期主要分享的是对于select的使用,使用select实现TCP并发服务器模型,由于之前所用到的技术知识只能够支撑我们进行单个访问,但是有了select之后呢,我们就能够实现多用户进行访问;这也是非常符合客观需求的; 这次呢我们重点来使用一下select; 用到的头文件如下: 我

    2024年02月08日
    浏览(47)
  • TCP服务器的演变过程:使用epoll构建reactor网络模型实现百万级并发(详细代码)

    手把手教你从0开始编写TCP服务器程序,体验开局一块砖,大厦全靠垒。 为了避免篇幅过长使读者感到乏味,对【TCP服务器的开发】进行分阶段实现,一步步进行优化升级。 本节,在上一章节介绍了如何使用epoll开发高效的服务器,本节将介绍使用epoll构建reactor网络模型,实

    2024年02月01日
    浏览(75)
  • 多路IO—POll函数,epoll服务器开发流程

    \\\"在计算机网络编程中,多路IO技术是非常常见的一种技术。其中,Poll函数和Epoll函数是最为常用的两种多路IO技术。这两种技术可以帮助服务器端处理多个客户端的并发请求,提高了服务器的性能。本文将介绍Poll和Epoll函数的使用方法,并探讨了在服务器开发中使用这两种技

    2024年02月06日
    浏览(43)
  • 【Linux网络编程】TCP并发服务器的实现(IO多路复用select)

    服务器模型主要分为两种, 循环服务器 和 并发服务器 。 循环服务器 : 在同一时间只能处理一个客户端的请求。 并发服务器 : 在同一时间内能同时处理多个客户端的请求。 TCP的服务器默认的就是一个循环服务器,原因是有两个阻塞 accept函数 和recv函数 之间会相互影响。

    2024年02月03日
    浏览(82)
  • 【TCP/IP】利用I/O复用技术实现并发服务器 - select函数

    目录 I/O复用技术 select函数 设置文件描述符 指定监视范围 设置超时 I/O复用服务器端的实现        由服务器创建多个进程来实现并发的做法有时会带来一些问题,比如:内存上的开销、CPU的大量占用等,这些因素会消耗掉服务器端有限的计算资源、进而影响程序之间的执

    2024年02月08日
    浏览(51)
  • epoll实现并发服务器

    epoll 是Linux操作系统提供的一种事件通知机制,用于高效处理大量文件描述符上的事件。它是一种基于内核的I/O事件通知接口,可以用于实现高性能的并发服务器和异步I/O操作。 与传统的事件通知机制(如 select 和 poll )相比, epoll 具有更高的性能和扩展性。它采用了一种基

    2024年02月09日
    浏览(54)
  • epoll并发服务器的实现

    1.实现并发通信的三种方式 ​ 实现并发通信主要有三种方式: 多进程服务器 、 多路复用服务器 (I/O复用)、 多线程服务器 多进程服务器 ​ 多进程服务器指的是利用不同进程处理来自不同客户端发来的连接请求,进程之间以轮转的方式运行,由于各个进程之间轮转运行的时

    2024年02月03日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包