论文阅读:通过时空生成卷积网络合成动态模式(重点论文)

这篇具有很好参考价值的文章主要介绍了论文阅读:通过时空生成卷积网络合成动态模式(重点论文)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

原文链接
github code
介绍视频
视频序列包含丰富的动态模式,例如在时域中表现出平稳性的动态纹理模式,以及在空间或时域中表现出非平稳的动作模式。 我们证明了时空生成卷积网络可用于建模和合成动态模式。 该模型定义了视频序列上的概率分布,对数概率由时空ConvNet定义,该网络由多层时空滤波器组成,用于捕获不同尺度的时空模式。 该模型可以通过迭代以下两个步骤的“综合分析”学习算法从训练视频序列中学习。 步骤 1 从当前学习的模型合成视频序列。 步骤 2 然后根据合成视频序列和观察到的训练序列之间的差异更新模型参数。 我们证明了学习算法可以合成真实的动态模式。

1. Introduction

视频序列中有各种各样的动态模式,包括在时间维度上表现出统计平稳性或随机重复性的动态纹理 [2] 或纹理运动 [24],以及在空间或时间域中非平稳的动作模式 。 综合和分析这种动态模式一直是一个有趣的问题。 在本文中,我们重点关注使用生成版本的卷积神经网络(ConvNet 或 CNN)合成动态模式的任务。

ConvNet [14, 12] 已被证明是一种非常成功的判别学习机器。 ConvNet 中的卷积运算特别适合图像、视频和声音等在空间域或时间域或两者中表现出平移不变性的信号。 最近,研究人员对ConvNet的生成方面越来越感兴趣,目的是可视化ConvNet学到的知识,或者合成现实信号,或者开发可用于无监督学习的生成模型。

在合成方面,人们提出了各种基于ConvNet的方法来合成逼真的静态图像[3,7,1,13,16]。 然而,文献中关于基于ConvNet合成动态模式的工作并不多,这也是本文的重点。

具体来说,我们建议通过推广[29]最近提出的生成式ConvNet模型来合成动态模式。 生成式ConvNet 可以从判别式ConvNet 推导出来。 它是一个随机场模型或基于能量的模型[15, 20],采用参考分布的指数倾斜形式,例如高斯白噪声分布或均匀分布。 指数倾斜由 ConvNet 参数化,该网络涉及多层线性滤波器和修正线性单元 (ReLU) [12],旨在捕获不同尺度的特征或模式。

生成式ConvNet可以通过Langevin动力学进行采样。 该模型可以通过随机梯度算法来学习[31]。 这是一种“综合分析”方案,旨在将朗之万动力学生成的合成信号与观察到的训练信号相匹配。 具体来说,学习算法在初始化参数和合成信号后迭代以下两个步骤。 步骤 1 通过从当前学习模型中采样的 Langevin 动力学更新合成信号。 然后,步骤 2 根据合成数据和观测数据之间的差异更新参数,以便将模型的密度从合成数据转向观测数据。 [29]表明学习算法可以合成真实的空间图像模式,例如纹理和物体。

在本文中,我们通过添加时间维度来概括空间生成式 ConvNet,以便生成的 ConvNet 由多层时空滤波器组成,这些滤波器旨在捕获各种尺度的时空模式。 我们证明了用于训练时空生成卷积网络的学习算法可以合成真实的动态模式。 我们还表明,可以从具有遮挡像素或丢失帧的不完整视频序列中学习模型,从而可以同时完成模型学习和模式完成.

2.相关工作

我们的工作是通过添加时间维度对[29]的生成ConvNet模型进行推广。 [29]没有研究动态模式,例如视频序列中的动态模式。 [11] 使用时空判别式 ConvNet 来分析视频数据。 [29] 研究了判别式 ConvNet 和生成式 ConvNet 之间的联系。

[2,24,25,9]已经研究了动态纹理或纹理运动。 例如,[2]提出了一种向量自回归模型,并通过单值分解进行逐帧降维。 它是具有高斯创新的线性模型。 [24]提出了一种基于帧稀疏线性表示的动态模型。 有关动态纹理的最新评论,请参阅[30]。 时空生成ConvNet是一种非线性和非高斯模型,预计可以通过多层非线性时空滤波器更灵活地捕获动态纹理中的复杂时空模式。

最近[23]推广了生成对抗网络[6]来模拟动态模式。 我们的模型是一个基于能量的模型,它也有对抗性的解释。 详细信息请参见第 3.4 节。

对于时态数据,流行的模型是循环神经网络 [27, 10]。 它是一个因果模型,需要一个起始框架。 相比之下,我们的模型是非因果的,并且不需要起始框架。 与循环网络相比,我们的模型在捕获多个时间尺度的时间模式方面更加方便和直接。

3. Spatial-temporal generative ConvNet

3.3. Sampling and learning algorith

该期望可以通过朗之万动力学产生的蒙特卡罗样本[31]来近似。 有关学习和采样算法的说明,请参阅算法 1。 该算法不断从当前模型合成图像序列,并更新模型参数,以便将合成的图像序列与观察到的图像序列进行匹配。 学习算法不断将模型的概率密度或低能量区域从合成数据转向观察数据
论文阅读:通过时空生成卷积网络合成动态模式(重点论文),MCMC,视频生成,论文阅读,网络,MCMC

在学习算法中,朗之万采样步骤涉及∂f(I;w)/∂I的计算,参数更新步骤涉及∂f(I;w)/∂w的计算。 由于f(I; w)的ConvNet结构,两个梯度都可以通过反向传播来有效计算,并且两个梯度在反向传播中共享大部分链式规则计算。 就 MCMC 采样而言,朗之万动力学从不断变化的分布中采样,因为 w (t) 不断变化。 因此,学习和采样算法运行非平稳链。

4.实验

可看 http://www.stat.ucla.edu/~jxie/STGConvNet/STGConvNet.html文章来源地址https://www.toymoban.com/news/detail-804928.html

到了这里,关于论文阅读:通过时空生成卷积网络合成动态模式(重点论文)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 生成网络论文阅读:DDPM(一):Denoising Diffusion Probabilistic Models论文概述

    1.我们可以看到最终通过不断的加入噪声,原始的图片变成了一个完全混乱的图片,这个完全混乱的图片就可以当成一个随机生成的噪声图片。(从x0开始不断加入噪声到xt,xt只是一个带有噪声的图片,再逐渐加入更多噪声,到XT的时候图片已经完全变成一个噪声图片了。)

    2024年02月05日
    浏览(46)
  • 【论文阅读】EULER:通过可扩展时间链接预测检测网络横向移动(NDSS-2022)

    作者:乔治华盛顿大学-Isaiah J. King、H. Howie Huang 引用:King I J, Huang H H. Euler: Detecting Network Lateral Movement via Scalable Temporal Graph Link Prediction [C]. Proceedings 2022 Network and Distributed System Security Symposium, 2022. 原文地址:https://dl.acm.org/doi/pdf/10.1145/3588771 源码地址:https://github.com/iHeartGrap

    2024年02月14日
    浏览(43)
  • 【论文阅读 09】融合门控自注意力机制的生成对抗网络视频异常检测

            2021年 中国图象图形学报 背景: 视频异常行为检测是智能监控技术的研究重点,广泛应用于社会安防领域。当前的挑战之一是如何提高异常检测的准确性,这需要有效地建模视频数据的空间维度和时间维度信息。生成对抗网络(GANs)因其结构优势而被广泛应用于视

    2024年02月03日
    浏览(46)
  • AI论文速读 |(Mamba×时空图预测!) STG-Mamba:通过选择性状态空间模型进行时空图学习

    (来了来了,虽迟但到,序列建模的新宠儿mamba终于杀入了时空预测!) 论文标题 :STG-Mamba: Spatial-Temporal Graph Learning via Selective State Space Model 作者 :Lincan Li, Hanchen Wang(王翰宸), Wenjie Zhang(张文杰), Adelle Coster 机构 :新南威尔士大学(UNSW) 论文链接 :https://arxiv.org/abs/

    2024年04月26日
    浏览(42)
  • 论文阅读-Pegasus:通过网络内一致性目录容忍分布式存储中的偏斜工作负载

    论文名称: Pegasus: Tolerating Skewed Workloads in Distributed Storage with In-Network Coherence Directories 高性能分布式存储系统面临着由于偏斜和动态工作负载引起的负载不平衡的挑战。本文介绍了Pegasus,这是一个利用新一代 可编程交换机ASIC 来平衡存储服务器负载的新型存储系统。Pegasus使

    2024年02月20日
    浏览(68)
  • 【论文阅读】通过3D和2D网络的交叉示教实现稀疏标注的3D医学图像分割(CVPR2023)

    论文:3D Medical Image Segmentation with Sparse Annotation via Cross-Teaching between 3D and 2D Networks 代码:https://github.com/hengcai-nju/3d2dct 问题1 :医学图像分割通常需要大量且精确标注的数据集。但是获取像素级标注是一项劳动密集型的任务,需要领域专家付出巨大的努力,这使得在实际临床场

    2024年02月05日
    浏览(65)
  • [论文阅读]FCAF3D——全卷积无锚 3D 物体检测

    FCAF3D:Fully Convolutional Anchor-Free 3D Object Detection FCAF3D:全卷积无锚 3D 物体检测 论文网址:Fcaf3d 代码网址:Fcaf3d 这篇论文介绍了一个用于室内3D物体检测的全卷积 Anchor-Free 方法 FCAF3D。主要贡献如下: 提出了第一个用于室内3D物体检测的全卷积Anchor-Free方法FCAF3D。 提出了一种新的

    2024年02月03日
    浏览(44)
  • 用于无监督视频异常检测的合成伪异常:一种简单有效的基于掩码自动编码器的框架 论文阅读

    论文标题:SYNTHETIC PSEUDO ANOMALIES FOR UNSUPERVISED VIDEO ANOMALY DETECTION: A SIMPLE YET EFFICIENT FRAMEWORK BASED ON MASKED AUTOENCODER 文章信息: 发表于:ICASSP 2023(CCF B) 原文链接:https://arxiv.org/abs/2303.05112 源码:无 由于用于训练的异常样本的可用性有限,视频异常检测通常被视为一类分类问题

    2024年02月04日
    浏览(52)
  • FSOD论文阅读 - 基于卷积和注意力机制的小样本目标检测

    标题:基于卷积和注意力机制的小样本目标检测 作者:郭永红,牛海涛,史超,郭铖 郭永红,牛海涛,史超,郭铖.基于卷积和注意力机制的小样本目标检测 [J/OL].兵工学报. https://link.cnki.net/urlid/11.2176.TJ.20231108.1418.002 典型的FSOD使用Fast R-CNN作为基本的检测框架 本文亮点:引入

    2024年01月24日
    浏览(53)
  • 【论文笔记】动态蛇卷积(Dynamic Snake Convolution)

    精确分割拓扑管状结构例如血管和道路,对医疗各个领域至关重要,可确保下游任务的准确性和效率。然而许多因素使分割任务变得复杂,包括细小脆弱的局部结构和复杂多变的全局形态。针对这个问题,作者提出了动态蛇卷积,该结构在管状分割任务上获得了极好的性能。

    2024年02月03日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包