Ansys Zemax | 如何使用光学制造全息图修正像差

这篇具有很好参考价值的文章主要介绍了Ansys Zemax | 如何使用光学制造全息图修正像差。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

附件下载

联系工作人员获取附件

本文介绍了利用光学全息图降低单透镜像差的方法。在描述了表示全息图构造光束的两个 ZMX 文件之后,本文演示了如何在重现文件中设置 OFH。然后解释了如何轻松地从重现文件中访问任何结构造光束变量,以实现衍射受限单透镜的设计。

简介

光学全息图 (OFH) 是OpticStudio中最通用的全息图模型。这个模型需要使用两个ZMX文件作为构造光,一个ZMX文件表示全息图重现文件。本示例所需的三个文件可以在本文的附件中找到。

初始系统

本文所考虑的系统(StartingLens.zmx)由一个简单的双凸透镜组成,工作波长为0.633 nm,像平面位于其近轴焦点处。

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

从 OPD 光扇图可以看出,球差是主要的像差:

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

通过在单透镜的前表面放置光学全息图 (OFH),可将其性能优化至衍射极限。OFH  需要使用三个 ZMX 文件:

  • 放置 OFH 的重现文件

  • 光线 1 的构造文件

  • 光线 2 的构造文件

在这个例子中,重现文件是“ StartingLens.zmx ”,包含放置 OFH 的单透镜。全息图构造文件名称为“ OFHSphericalCorrector_1.zmx ”和“ OFHSphericalCorrector_2.zmx ”。这些 ZMX 文件满足 OFH 构造文件所需的命名规则(它们的文件名前缀相同,但在末尾附加了“ _1 ”和“ _2 ”的后缀)。

构造文件

“ OFHSphericalCorrector_1.zmx ”是构造文件 1,只包含一个准直光束入射透镜。“ OFHSphericalCorrector_2.zmx ”是构造文件 2,它类似于构造文件 1,但另外包含一个位于透镜前表面前的相位板。该相位板使用 Zernike Fringe 相位表面 (Zernike Fringe Phase surface) 建模,该表面的所有项最初都被设为零。将分别表示离焦和三阶球差的第 4 项和第 9 项设为变量,以便以后进行适当的优化。

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

上图是两个构造文件只绘制到镜头的前表面的布局图,这也是每个文件中的系统光阑。光阑代表假定的两个构造光相互干涉的表面,只有在构造文件中光阑位置处的光线交互位置的向量才能决定全息图的属性。从 OFH 的角度来看,构造文件中所有在光阑后的表面都将被忽略,所以光阑后的表面在布局图中为了清晰显示都被隐藏了。

设置重构系统

一旦构造文件被定义,重现系统就可以从初始系统开始设置了 (" StartingLens.zmx ")。

首先,确保两个构造文件与初始系统放在同一个文件夹中。然后打开后者,建立 OFH:

  1. 形状 = 0,对应圆锥非球面形状,同标准面类似。

  2. 全息类型 = 1,对应于与全息图 1 表面相同的结构几何,在这种情况下,两束构造光束都是从一个无限远的光源发散的。

  3. 衍射级次 = 1

  4. 曲率 = 1/(前透镜半径) = 0.02 mm-1

  5. 圆锥系数 = 0

  6. OPD模式 = 0,对应全息图默认的光程差计算

  1. 在第 3 面的注释单元格中指定构造文件的公共部分名称,在本例中为“ OFHSphericalCorrector ”

  2. 改变透镜前表面(表面 #3)为光学构造全息图

  3. 设置适当的 OFH 参数,以确保全息图的形状和功能无误,在这种情况下:

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

现在透镜前表面是一个 OFH 面,与初始系统的透镜前表面形状匹配。这个系统包含了 OFH,代表了全息图的重现系统。

在此阶段,由于构造文件 2 中的相位板没有任何非零项,OFH 是由两束相同的光束的干涉构成,对系统没有任何影响。因此,重构系统的外观和性能应该与原始的“ StartingLens.zmx ”文件完全相同。

优化 OFH

如前所述,构造文件 2 中的相位板已经定义了两个变量,Zernike 项 4 和 9。通过在多重结构编辑编辑器工具栏中单击 增加全息变量 (Add Hologram Variables),可以轻松地从重现文件中访问这些变量,如下图所示:

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

增加全息变量 (Add Hologram Variables) 可以在构造文件中查找变量,并将它们作为 HLGV 多重结构操作数添加到重现文件中。这些变量现在可以与重现文件中的任何其他变量一起使用(如果有的话)。在本例中,将添加4个 HLGV 操作数,2个用于构造文件1,2个用于构造文件2。我们只对构造文件2的操作数感兴趣(它已经应用了变量求解 'V'),所以删除构造文件1的操作数。使用 HLGV 操作数允许同时优化构造和重现系统。注意, HLGV 报告的变量不是只读的,更改它们的值将更改构造文件中的相关参数。为了优化系统以获得最佳性能,将使用以最佳 RMS 光斑尺寸为评价函数目标。为此,按如下方式设置优化向导,然后单击 OK:

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

点击 分析 (Analyze) … 执行优化 (Optimize!) 优化当前系统。请注意构造文件变量现在是如何优化以纠正重现系统中的畸变,并实现最小RMS光斑的:

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

对全息图构造干涉进行自定义分析,可以将得到的全息图可视化。

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

显示艾里斑 (Airy disk) 的标准点列图,可以用来快速确认该系统现在是否处于衍射极限。由于存在高阶像差,该点不是一个理想的像点。

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差

即使系统已经处于衍射极限,波前图内仍显示了一个不实际的 RMS 波前误差, 约31个波长大小。这是默认全息图的光程差计算(OPD模式 = 0)导致错误结果的实例之一。没有可靠的算法可以在所有情况下自动确定适当的 OPD 模式。因此,在优化包括 OFH 在内的系统时,评价函数最好不要依赖 OPD 数据,以免计算错误。如果 OPD 明显错误,如本例中所示,用户必须手动确定正确的OPD算法,方法是将 OPD 模式设置为1、2、3或4,直到正确计算出 OPD 值为止。在这个具体的文件中,当 OPD 模式 = 2时计算出正确的 OPD,从而得到更为真实的0.009 波长的 RMS 波前误差。有关不同 OPD 计算的详细信息,请参阅 OpticStudio 帮助文件。最后,请注意,由于重现文件和构造文件是通过 HLGV 操作数链接的,因此保存重现文件也将同时保存两个相关的构造文件。这可以通过点击文件 (File) …保存 (Save) 并打开 OpticStudio 的第二个实例“ OFHSphericalCorrector_2.zmx ”文件来确认,文件中设置在 Zernike Fringe 相位参数项上的变量现在通过优化重现文件找到的新的值。

Ansys Zemax | 如何使用光学制造全息图修正像差,光学,ANSYS,zemax,Ansys,光学,光学仿真,知识干货,Zemax,全息图,修正像差文章来源地址https://www.toymoban.com/news/detail-804967.html

到了这里,关于Ansys Zemax | 如何使用光学制造全息图修正像差的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Ansys Zemax | NSC 非序列矢高图用户分析

    本文介绍如何使用 NSC 矢高图用户分析功能在非序列模式下测量和显示对象的矢高。了解此功能的基础知识,包括如何设置复杂 CAD 零件的文件以获取特定面的矢高值。 (联系我们获取文章附件) 介绍 OptocStudio 的序列模式具有表面矢高分析功能,该功能将表面从局部顶点的矢

    2024年02月07日
    浏览(35)
  • Zemax光学设计(一)——单透镜设计

      设计优化一个玻璃材料为N-BK7,F数为4的单透镜,满足以下规格: 规格 约束 焦距 100 mm 半视场角(SFOV) 5° 波长 632.8 nm(HeNe) 中心厚度 2 mm ~ 12 mm 边缘厚度 2 mm 优化标准 全视场 RMS 均方根半径平均值 物体位置 无穷远   在序列模式设计中,每个光学系统从物面(OBJ)开

    2023年04月22日
    浏览(38)
  • Zemax光学设计(十二) —— 激光扫描物镜设计

           本文从已有的激光扫描镜头结构入手,使用缩放法对设计进行优化,达到设计要求。通过本次设计学习如何通过系统分析结果进行下一步优化,以及如何进行优化。       焦距160、全视场 40°、入瞳直径 16mm、工作波长10.6μm(CO2激光)       1、物距 -∞、焦距

    2024年01月16日
    浏览(48)
  • Zemax光学设计(十五) —— 三片摄影物镜(1)

    设计步骤可以分为两步: 1、 根据初级像差理论,通过解七个像差方程和一个光焦度方程求解一个初始结构;        但是这里与 Richard Ditteon 方法不同,这里只解初级位置色差、初级倍率色差以及初级场曲三个像差方程和一个光焦度方程,确定三片物镜的光焦度分配。 其

    2024年02月06日
    浏览(36)
  • Ansys Lumerical Zemax Speos | CMOS 传感器相机:3D 场景中的图像质量分析

    在本例中,我们介绍了一个仿真工作流程,用于在具有不同照明条件的特定环境中,从光学系统和CMOS成像器的组合中分析相机系统的图像质量。此示例主要涵盖整个工作流程中的Ansys Speos部分。该光学系统采用Ansys Zemax OpticStudio设计,并导出到Ansys Speos进行系统级分析。CMOS成

    2023年04月08日
    浏览(80)
  • 你真的懂面形误差PV和RMS的计算方法吗?均方根(RMS)与方差、标准差有什么区别?Zemax中的波前RMS是什么?(光学测量、光学设计必看)

    本文讲述了光学加工和检测过程 中, 元件面形误差PV和RMS的计算方法 , RMS与方差、标准差有什么区别 ,以及 Zemax中的波前RMS是怎么计算的、与上述RMS有什么差异 等。属于光学检测必看的知识点。 PV是英文单词Peak-to-Veally(从峰到谷)的缩写,表示元件面形误差矩阵  中元素

    2024年02月04日
    浏览(45)
  • 高端制造业中的通用性超精密3D光学测量仪器

    超精密光学3D测量仪器具有高精度、自动化程度高、实时反馈和范围广等优势。它能够实现微米级别的精确测量,能够精确测量产品的尺寸、形状和表面粗糙度等,具有广泛的应用价值和重要意义。 超精密光学3D测量仪器配备多种传感器、控制器和计算机系统,可以自动对物

    2024年02月04日
    浏览(49)
  • 【Unity ShaderGraph】| 如何快速制作一个炫酷的 全息投影效果

    前言 本文将使用ShaderGraph制作一个 炫酷的 全息投影效果 ,可以直接拿到项目中使用。 对ShaderGraph还不了解的小伙伴可以参考这篇文章:【Unity ShaderGraph】| Shader Graph入门介绍 | 简介 | 配置环境 | 窗口介绍 | 简单案例 下面就开始看一下具体的制作流程,然后自己动手制作一个

    2024年02月05日
    浏览(52)
  • 裸眼3D全息投影技术

    现在这个智能时代,聊天的时候不说点黑科技,都不好意思和人开口。今天,小画就要和大家聊聊投影领域的黑科技——全息投影。 在看好莱坞大片的时候,有一个场景我们非常熟悉:主角挥一下手,眼前就会出现一块立体的虚拟的显示屏,屏幕上的内容主角可以任意切换—

    2023年04月19日
    浏览(43)
  • 「数字化制造」 是如何让制造过程信息化的?

    「数字化制造」 是如何让制造过程信息化的? 数字化制造 是指 利用数字技术和信息化手段来实现制造过程的智能化、自动化和高效化。 它通过将 传感器、物联网、云计算、大数据分析、人工智能等先进技术与制造业 相结合,实现生产过程的数字化、网络化和智能化。 ✅

    2024年02月16日
    浏览(54)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包