Opencv_棋盘格标定相机

这篇具有很好参考价值的文章主要介绍了Opencv_棋盘格标定相机。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文章内容:
  1. 读取棋盘格图片进行标定
  2. 生成棋盘格图片
  3. 保存标定后的内容

棋盘格下载:https://gitee.com/liangbo1996/chessboard_27mm

// // 生成棋盘格(demo)
// void CreateGridironPattern()
// {
//     // 单位转换
//     int dot_per_inch = 108;
//     /*
//     * 这里以我惠普 光影精灵9的参数计算如下:
//     *  公式: DPI = 1920 / sqrt(15.6 ^ 2 + (1920 / 1080 * 15.6)^2)
//     *  sqrt(15.6 ^ 2 + (1920 / 1080 * 15.6)^2) ≈ 17.76
//     */

//     double cm_to_inch = 0.3937;   // 1cm = 0.3937inch
//     double inch_to_cm = 2.54;    //  1inch = 2.54cm( 1 英寸 = 2.54 厘米 是一个国际公认的单位)
//     double inch_per_dot = 1.0 / 96.0;

//     // 自定义标定板
//     double blockSize_cm = 1.5;  // 方格尺寸: 边长1.5cm的正方形
//     // 设置横列方框数目
//     int blockcol = 10;
//     int blockrow = 8;

//     int blockSize = (int)(blockSize_cm / inch_to_cm * dot_per_inch);
//     cout << "标定板尺寸: " << blockSize << endl;

//     int imageSizeCol = blockSize * blockrow;
//     int imageSizeRow = blockSize * blockcol;

//     Mat chessBoard(imageSizeCol, imageSizeRow, CV_8UC3, Scalar::all(0));
//     unsigned char color = 0;

//     for (int i = 0; i < imageSizeRow; i = i + blockSize)
//     {
//         color = ~color; // 将颜色值取反,如果开始为0,取反后为255(即黑白互换)
//         for (int j = 0; j < imageSizeCol; j = j + blockSize)
//         {
//             Mat ROI = chessBoard(Rect(i, j, blockSize, blockSize));
//             ROI.setTo(Scalar::all(color));
//             color = ~color;
//         }
//     }

//     imshow("chess board", chessBoard);
//     imwrite("chessBard.jpg", chessBoard);

//     waitKey(0);
//     return;
// }
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/calib3d/calib3d.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <fstream>

using namespace cv;
using namespace std;

int main()
{
    // 读取文件
    std::vector<cv::String> images;
    std::string path = "./images/*.jpg";
    cv::glob(path, images);

    if(images.size() == 0)
    {
        cout << "path is error" << endl;
        return 0;
    }

    // 设置变量
    int image_count = 0;                        // 图像数量
    Size image_size;                            // 图像的尺寸
    Size board_size = Size(9, 6);               // 标定板上每行、列的角点数
    vector<Point2f> image_points_buf;           // 缓存每幅图像上检测到的角点
    vector<vector<Point2f>> image_points_seq;   // 保存检测到的所有角点

    // 读取文件并进行操作
    for (int i = 0; i < images.size(); i++)
    {
        image_count++;
        cout << "image_count: " << image_count << endl;

        Mat imageInput = cv::imread(images[i]);
        if(imageInput.empty())
        {
            cout << "read error" << endl;
            return 0;
        }

        //读入第一张图片时获取图像宽高信息
        if (image_count == 1)
        {
            image_size.width = imageInput.cols;
            image_size.height = imageInput.rows;
            cout << "image_size.width = " << image_size.width << endl;
            cout << "image_size.height = " << image_size.height << endl;
        }

        // 提取角点
        if (0 == findChessboardCorners(imageInput, board_size, image_points_buf))
        {
            cout << "can not find chessboard corners!\n"; //找不到角点
            exit(1);
        }
        else
        {
            Mat view_gray;
            cvtColor(imageInput, view_gray, COLOR_RGB2GRAY);
            // 亚像素精确化
            find4QuadCornerSubpix(view_gray, image_points_buf, Size(5, 5)); //对粗提取的角点进行精确化
            //cornerSubPix(view_gray,image_points_buf,Size(5,5),Size(-1,-1),TermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER,30,0.1));
            image_points_seq.push_back(image_points_buf);  //保存亚像素角点
            // 在图像上显示角点位置
            drawChessboardCorners(view_gray, board_size, image_points_buf, false); //用于在图片中标记角点
            imshow("Camera Calibration", view_gray); //显示图片
            waitKey(500);//暂停0.5S
        }
    }

    int total = image_points_seq.size();
    cout << "total = " << total << endl;
    int CornerNum = board_size.width * board_size.height; //每张图片上总的角点数
    for (int ii = 0 ; ii < total ; ii++)
    {
        if (0 == ii % CornerNum) // 24 是每幅图片的角点个数。此判断语句是为了输出 图片号,便于控制台观看
        {
            int i = -1;
            i = ii / CornerNum;
            int j = i + 1;
            cout << "--> 第 " << j << "图片的数据 --> : " << endl;
        }
        if (0 == ii % 3)	// 此判断语句,格式化输出,便于控制台查看
        {
            cout << endl;
        }
        else
        {
            cout.width(10);
        }
        //输出所有的角点
        cout << " -->" << image_points_seq[ii][0].x;
        cout << " -->" << image_points_seq[ii][0].y;
    }
    cout << "角点提取完成!\n";

    //以下是摄像机标定
    cout << "开始标定………………";
    /*棋盘三维信息*/
    Size square_size = Size(10, 10); /* 实际测量得到的标定板上每个棋盘格的大小 */
    vector<vector<Point3f>> object_points; /* 保存标定板上角点的三维坐标 */
    /*内外参数*/
    Mat cameraMatrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 摄像机内参数矩阵 */
    vector<int> point_counts;  // 每幅图像中角点的数量
    Mat distCoeffs = Mat(1, 5, CV_32FC1, Scalar::all(0)); /* 摄像机的5个畸变系数:k1,k2,p1,p2,k3 */
    vector<Mat> tvecsMat;  /* 每幅图像的平移向量 */
    vector<Mat> rvecsMat; /* 每幅图像的旋转向量 */
    /* 初始化标定板上角点的三维坐标 */
    int i, j, t;
    for (t = 0; t < image_count; t++)
    {
        vector<Point3f> tempPointSet;
        for (i = 0; i < board_size.height; i++)
        {
            for (j = 0; j < board_size.width; j++)
            {
                Point3f realPoint;
                /* 假设标定板放在世界坐标系中z=0的平面上 */
                realPoint.x = i * square_size.width;
                realPoint.y = j * square_size.height;
                realPoint.z = 0;
                tempPointSet.push_back(realPoint);
            }
        }
        object_points.push_back(tempPointSet);
    }
    /* 初始化每幅图像中的角点数量,假定每幅图像中都可以看到完整的标定板 */
    for (i = 0; i < image_count; i++)
    {
        point_counts.push_back(board_size.width * board_size.height);
    }
    /* 开始标定 */
    calibrateCamera(object_points, image_points_seq, image_size, cameraMatrix, distCoeffs, rvecsMat, tvecsMat, 0);
    cout << "标定完成!\n";
    //对标定结果进行评价
    cout << "开始评价标定结果………………\n";
    double total_err = 0.0; /* 所有图像的平均误差的总和 */
    double err = 0.0; /* 每幅图像的平均误差 */
    vector<Point2f> image_points2; /* 保存重新计算得到的投影点 */
    cout << "\t每幅图像的标定误差:\n";
    cout << "每幅图像的标定误差:\n";
    for (i = 0; i < image_count; i++)
    {
        vector<Point3f> tempPointSet = object_points[i];
        /* 通过得到的摄像机内外参数,对空间的三维点进行重新投影计算,得到新的投影点 */
        projectPoints(tempPointSet, rvecsMat[i], tvecsMat[i], cameraMatrix, distCoeffs, image_points2);
        /* 计算新的投影点和旧的投影点之间的误差*/
        vector<Point2f> tempImagePoint = image_points_seq[i];
        Mat tempImagePointMat = Mat(1, tempImagePoint.size(), CV_32FC2);
        Mat image_points2Mat = Mat(1, image_points2.size(), CV_32FC2);
        for (int j = 0 ; j < tempImagePoint.size(); j++)
        {
            image_points2Mat.at<Vec2f>(0, j) = Vec2f(image_points2[j].x, image_points2[j].y);
            tempImagePointMat.at<Vec2f>(0, j) = Vec2f(tempImagePoint[j].x, tempImagePoint[j].y);
        }
        err = norm(image_points2Mat, tempImagePointMat, NORM_L2);
        total_err += err /=  point_counts[i];
        std::cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
        cout << "第" << i + 1 << "幅图像的平均误差:" << err << "像素" << endl;
    }
    std::cout << "总体平均误差:" << total_err / image_count << "像素" << endl;
    cout << "总体平均误差:" << total_err / image_count << "像素" << endl << endl;
    std::cout << "评价完成!" << endl;
    //保存定标结果
    std::cout << "开始保存定标结果………………" << endl;
    Mat rotation_matrix = Mat(3, 3, CV_32FC1, Scalar::all(0)); /* 保存每幅图像的旋转矩阵 */
    cout << "相机内参数矩阵:" << endl;
    cout << cameraMatrix << endl << endl;
    cout << "畸变系数:\n";
    cout << distCoeffs << endl << endl << endl;
    for (int i = 0; i < image_count; i++)
    {
        cout << "第" << i + 1 << "幅图像的旋转向量:" << endl;
        cout << rvecsMat[i] << endl;
        /* 将旋转向量转换为相对应的旋转矩阵 */
        Rodrigues(rvecsMat[i], rotation_matrix);
        cout << "第" << i + 1 << "幅图像的旋转矩阵:" << endl;
        cout << rotation_matrix << endl;
        cout << "第" << i + 1 << "幅图像的平移向量:" << endl;
        cout << tvecsMat[i] << endl << endl;
    }
    std::cout << "完成保存" << endl;
    cout << endl;
    /************************************************************************
    显示定标结果
    *************************************************************************/
    Mat mapx = Mat(image_size, CV_32FC1);
    Mat mapy = Mat(image_size, CV_32FC1);
    Mat R = Mat::eye(3, 3, CV_32F);
    std::cout << "保存矫正图像" << endl;
    string imageFileName;
    std::stringstream StrStm;
    for (int i = 0 ; i < image_count ; i++)
    {
        std::cout << "Frame #" << i + 1 << "..." << endl;
        initUndistortRectifyMap(cameraMatrix, distCoeffs, R, cameraMatrix, image_size, CV_32FC1, mapx, mapy);
        StrStm.clear();
        cout << images[i] << endl;
        Mat imageSource = imread(images[i]);
        Mat newimage = imageSource.clone();
        //另一种不需要转换矩阵的方式
        //undistort(imageSource,newimage,cameraMatrix,distCoeffs);
        remap(imageSource, newimage, mapx, mapy, INTER_LINEAR);
        StrStm.clear();
        StrStm << i + 1;
        StrStm >> imageFileName;
        imageFileName += "_d.jpg";
        imwrite(imageFileName, newimage);
    }
    std::cout << "保存结束" << endl;
}

文章来源地址https://www.toymoban.com/news/detail-805188.html

到了这里,关于Opencv_棋盘格标定相机的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 相机标定-张正友棋盘格标定法

    目录 1.针孔相机模型 2.相机成像过程 2.1  各个坐标系之间的转换 2.1.1 图像坐标系到像素坐标系  2.1.2 相机坐标系到图像坐标系  2.1.3世界坐标系到相机坐标系  2.1.4世界坐标系到像素坐标系 3.畸变与畸变矫正 3.1 畸变 3.2 畸变公式 4.相机标定原理 5.张正友标定法介绍 5.1张正友

    2024年01月16日
    浏览(45)
  • 相机标定-机器视觉基础(理论推导、Halcon和OpenCV相机标定)

             相机标定是获得目标工件精准坐标信息的基础。首先,必须进行相机内参标定,构建一个模型消除图像畸变;其次,需要对相机和机器人的映射关系进行手眼标定,构建一个模型将图像坐标系上的点映射到世界坐标系。主要分为背景知识、相机内外参模型推导、

    2023年04月21日
    浏览(48)
  • OpenCV中的相机标定

          之前在https://blog.csdn.net/fengbingchun/article/details/130039337 中介绍了相机的内参和外参,这里通过OpenCV中的接口实现对内参和外参的求解。       估计相机参数的过程称为相机标定(camera calibration)。相机标定是使用已知的真实世界模式(例如棋盘)来估计相机镜头和传感器的外

    2023年04月19日
    浏览(57)
  • OpenCV实战(23)——相机标定

    我们已经了解了相机如何通过在 2D 传感器平面上投射光线来拍摄 3D 场景,生成的图像准确地表示了在捕获图像的瞬间从特定视点观察场景。然而,图像形成过程消除了与其所表示场景元素的深度有关的所有信息。为了恢复场景的 3D 结构和摄像机的 3D 姿态,我们需要对相机参

    2024年02月08日
    浏览(54)
  • opencv相机标定

      当你把摄像机放在一个特定的位置,在它的后面放一个目标图像,或者是把摄像机放到某个物体上,摄像机周围的物体是什么形状,你需要知道这些信息。 当你在计算机上处理图像时,会使用以下三个参数: 1.像素坐标(pixel):像素坐标是相机中每个点的世界坐标(x,y

    2024年02月16日
    浏览(35)
  • 用OpenCV进行相机标定(张正友标定,有代码)

    理论部分可以参考其他博客或者视觉slam十四讲 相机标定主要是为了获得相机的内参矩阵K和畸变参数 内参矩阵K 畸变系数:径向畸变(k1,k2,k3), 切向畸变(p1,p2) 径向畸变公式 切向畸变公式 张正友标定方法能够提供一个比较好的初始解,用于后序的最优化. 这里用棋盘格进行标定,如

    2024年02月07日
    浏览(42)
  • Opencv 相机内参标定及使用

    目录 一、功能描述 二、标定板制作 三、图像采集 四、标定内参 方法一:Matlab标定  方法二:C++程序标定 五、使用内参 1.本文用于记录通过 Opencv 进行相机内参标定和对内参的使用来进行图像畸变矫正。         1)相机矩阵:包括焦距(fx,fy),光学中心(Cx,Cy),完

    2024年01月24日
    浏览(40)
  • Python之OpenCV相机标定

    本文结合OpenCV官方样例,对官方样例中的代码进行修改,使其能够正常运行,并对自己采集的数据进行实验和讲解。 OpenCV使用棋盘格板进行标定,如下图所示。为了标定相机,我们需要输入一系列三维点和它们对应的二维图像点。在黑白相间的棋盘格上,二维图像点很容易通

    2024年02月03日
    浏览(48)
  • OpenCV相机标定全过程

    一、OpenCV标定的几个常用函数 findChessboardCorners() 棋盘格角点检测 第一个参数是输入的棋盘格图像(可以是8位单通道或三通道图像); 第二个参数是棋盘格内部的角点的行列数(注意:不是棋盘格的行列数,如棋盘格的行列数分别为4、8,而内部角点的行列数分别是3、7,因

    2024年02月04日
    浏览(48)
  • 相机标定原理及应用(opencv)

    在机器视觉领域,相机的标定是一个关键的环节,它决定了机器视觉系统能否有效的定位,能否有效的计算目标物。相机的标定基本上可以分为两种,第一种是相机的自标定;第二种是依赖于标定参照物的标定方法。前者是相机拍摄周围物体,通过数字图像处理的方法和相关

    2024年02月22日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包