基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

这篇具有很好参考价值的文章主要介绍了基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

仿真平台在帮助提升研发效率、加快产品面市时间上的作用已得到诸多验证,通过对处理器进行仿真来支持嵌入式系统及软件的虚拟化开发、测试和验证成为目前应用较为广泛的方法。天目全数字实时仿真软件SkyEye是一款基于可视化建模的硬件行为级仿真平台,在众多仿真工具中有着国产自主可控、所支持的处理器种类更为全面等优点。

本文主要关于如何基于SkyEye实现飞腾处理器的仿真,以及如何在飞腾仿真处理器上运行U-Boot并通过网络加载Phytium-FreeRTOS。

01.U-Boot

U-Boot(Universal Bootloader)是一个用于嵌入式系统与设备的轻量级引导加载程序,主要用于在启动时初始化硬件并加载操作系统。作为一个开源项目,U-Boot支持用户查看、修改和分发源代码,符合自由软件的原则。

具体来说,U-Boot负责初始化嵌入式系统的硬件,包括处理器、内存、外设等,其加载引导的操作系统可以是Linux、Android等嵌入式操作系统;同时提供一个命令行界面,用户可以通过该界面执行各种命令,例如烧写Flash、通过网络启动操作系统等。生态方面,U-Boot广泛支持多种处理器架构,包括ARM、MIPS、PowerPC、RISC-V等,并且具备很强的可移植性,可以轻松地移植到不同的硬件平台上。 

02.编译U-Boot

在编译使用环境的选择上,推荐使用Ubuntu系统(本文演示中使用的是Ubuntu22.04系统)。在下载源码编译之前,需要做以下准备:

i. 安装git

ii. 安装gcc-aarch64-linux-gnu交叉编译工具链

iii. 安装make

在shell中使用以下命令安装git、make以及gcc-aarch64-linux-gnu:

sudo apt install git make gcc-aarch-linux-gnu

 文章来源地址https://www.toymoban.com/news/detail-805733.html

2.1 下载飞腾官方移植好的U-Boot源码

源码可以通过飞腾在gitee上的仓库下载,在shell环境中执行下面的命令:

git clone https://gitee.com/PhytiumISJL/u-boot.git

 

使用上述git命令后,git将会从代码仓库中下载飞腾官方U-Boot源码,如下图所示。u-boot目录即为下载得到的飞腾官方U-Boot源码。

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

2.2 编译U-Boot

2.2.1 设置环境变量

开始编译前,出于U-Boot支持多种目标架构的原因,需要根据目标平台以及所用的交叉编译工具链设置ARCH和CROSS_COMPILE两个环境变量。

编辑~/路径下的.bashrc文件,在文件末尾加入两行脚本:

export ARCH=armexport CROSS_COMPILE=aarch64-linux-gnu-

设置后需要重新启动终端,或者使用【source ~/.bashrc】命令让配置在当前终端立即生效。

 

2.2.2 编译

对U-Boot的编译可通过执行下列命令来完成。编译完成后将会得到可以在FT2000处理器中运行的U-Boot二进制可执行文件。

make D2000_defconfig && make

下图是编译过程中最后一部分输出信息以及编译后的目录结构,从中可以看到编译生成了u-boot-nodtb.bin文件,该文件即为将要被加载到FT2000处理器中运行的U-Boot。

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

在后续加载u-boot-dtb.bin文件至基于SkyEye仿真的FT2000处理器上运行的过程中,需要配置程序的入口地址。该地址可以通过readelf命令查看u-boot得到,u-boot为elf格式的可执行文件,查看信息如下:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

u-boot-dtb.bin文件是使用aarch64-linux-gnu-objcopy命令将u-boot转换为bin文件格式所得到的,因此其入口地址是一致的。从上图可知其入口地址为0x180000。

 

03.编译Phytium-FreeRTOS

FreeRTOS(Real-Time Operating System)是一个开源的、实时的嵌入式操作系统内核,专为小型嵌入式系统设计。Phytium-FreeRTOS是由Phytium官方专为FT2000-4、D2000等处理器定制的FreeRTOS移植版本,可以在Windows、Linux系统上搭建环境编译得到Phytium-FreeRTOS镜像,本文将以Windows系统为例。

 

3.1 Phytium-FreeRTOS-SDK开发环境

Phytium官方提供了一个FreeRTOS的开发环境,可供快速构建和开发Phytium-FreeRTOS的程序镜像,具体可通过以下网址获取开发环境:

https://gitee.com/phytium_embedded/phytium-free-rtos-sdk

 

Phytium-FreeRTOS-SDK开发环境集成了MSYS2、arm-none-eabi-gcc、aarch64-none-elf-gcc、tftpd64等工具。

 

MSYS2

Msys2 portable环境, 主要提供Windows上的shell命令行开发环境,包括Cygwin(POSIX兼容性层)和MinGW-w64。

 

arm-none-eabi-gcc、aarch64-none-elf-gcc

基于MinGW-w64构建的专门用于ARM架构的交叉编译工具链。

 

tftpd64

提供tftp服务,用于通过网络下载二进制镜像文件,主要功能包括安装tftp32服务和配置tftp目录。

 

3.2 配置环境变量

添加Windows环境变量【PHYTIUM_DEV_PATH】(环境变量名不能自定义),例如指向目录【D:\Software\phytium-dev-windows-nt】(Phytium-FreeRTOS-SDK开发环境的存放路径可以自定义)。

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

 

3.3 进入Phytium-FreeRTOS-SDK编译环境

Phytium-FreeRTOS-SDK编译环境基于MSYS2构建,所以编译过程在MSYS2提供的shell中进行。双击【run_msys2.cmd】进入开发环境,如下图所示:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

 进入开发环境后,执行当前目录下的setup_dev.py以初始化开发环境。该Python脚本会解压并安装Phytium-FreeRTOS-SDK开发环境自带的交叉编译工具链,安装完成后重启系统或者执行下述命令,可以使编译工具链的环境生效:

source /etc/profile.d/phytium_dev.sh

以上过程如下图所示:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

 3.4 拉取Phytium-FreeRTOS-SDK源码

上述章节的步骤完成后,可以在phytium-dev-windows-nt目录下使用下述git命令实现Phytium-FreeRTOS-SDK源码的拉取。

git clone https://gitee.com/phytium_embedded/phytium-free-rtos-sdk.git ./phytium-free-rtos-sdk

 

进入拉取到的源码路径下,执行该路径下的install.py脚本,将会安装Standalone SDK和设置环境变量,安装完成后重启系统或者执行下述命令可使编译环境立即生效:

source /etc/profile.d/phytium_dev.sh

 

以上执行过程如下图所示:

 基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

3.5 编译

完成上述步骤后,进入到【/phytium-free-rtos-sdk/example/template】目录,使用make -j8命令编译,编译过程如下图所示:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

编译完成后,使用ls查看当前目录下的文件,可以看到freertos.elf可执行文件已经生成。

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

后续将会使用U-Boot从tftp服务器上下载Phytium-FreeRTOS的程序镜像到目标板卡上运行,此处以下载freertos.bin文件为例。 

通过readelf工具可以查看到freertos.elf可执行文件为AArch64架构,程序入口地址为0x80100000,后续在SkyEye中加载该可执行文件将会用到这个地址,详细信息如下图所示:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

04.SkyEye仿真FT2000运行U-Boot

4.1 SkyEye仿真FT2000

SkyEye支持用户通过拖拽的方式对硬件进行行为级别的仿真和建模。使用SkyEye仿真的FT2000处理器可视化模型如下图所示:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

 4.2 配置SkyEye脚本

处理器仿真模型搭建完成后,需要配置SkyEye脚本来加载镜像启动。该脚本的工作主要是解析json文件并示例化模型对象、将镜像加载到指定地址、设置PC寄存器、最后开始执行。

define-conf D2000.jsonload-file ftc663_core_0 binary/u-boot-dtb.bin 0x180000set-pc ftc663_core_0 0x180000init-ok

 

4.3 运行U-boot

在SkyEye中加载U-boot,运行结果如下图所示:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

 从上图的串口输出信息中可知,U-Boot已经成功启动并进入命令行,接下来只需搭建好TFTP服务器,便可通过TFTP服务器下载freertos.bin运行。

 

05.U-Boot加载Phytium-FreeRTOS运行

U-Boot可以通过tftboot命令从tftp服务器上下载镜像至目标板卡的指定地址处,并使用go命令启动镜像。

 

5.1 tftp服务器搭建

本文选择使用TFTPD64来实现tftp服务器的搭建。TFTPD64是一个基于Windows平台、简单易用的TFTP服务器搭建软件,可供快速搭建TFTP服务器。软件安装后如下图所示,需要根据实际的freertos.bin文件存放路径以及本机网卡的IP地址来设置Current Directory和Server interface。

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

 

5.2 tftpboot命令下载镜像启动

tftp服务器搭建完成后,使用tftpboot命令从服务器下载镜像到0x80100000地址处,该地址为freertos.bin的程序入口地址。下载镜像到对应地址后,使用go命令启动镜像。如下图所示,红框中为用U-Boot加载镜像和启动镜像执行的命令,U-Boot已经成功实现Phytium-FreeRTOS的启动:

基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS

 

到了这里,关于基于SkyEye仿真飞腾处理器:运行U-Boot并加载Phytium-FreeRTOS的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 『模型部署』神经网络模型部署[运行时|指令执行|处理器架构|TensorRT]

    『模型部署』神经网络模型部署[运行时|指令执行|处理器架构|TensorRT] 辅助文档-本教程配套代码,以及更多范例和文档 :https://github.com/NVIDIA/trt-samples-for-hackathon-cn/tree/master/cookbook Polygraphy:深度学习推理原型设计和调试工具包 介绍个工具Torch.Profiler,使用它来确定你的性能瓶颈

    2024年02月11日
    浏览(50)
  • 解决MAC M1处理器运行Android protoc时出现的错误

    Protobuf是Google开发的一种新的结构化数据存储格式,一般用于结构化数据的序列化,也就是我们常说的数据序列化。这个序列化协议非常轻量级和高效,并且是跨平台的。目前,它支持多种主流语言,比传统的XML、JSON等方法更具优势。详细信息请参考:Google protocol buffer。但是

    2024年02月14日
    浏览(32)
  • ARM处理器运行Windows系统的三防加固平板|亿道三防

    大家好!今天我要为大家介绍一款引人注目的三防加固平板电脑——亿道三防系列产品。它们采用 高通ARM 处理器,并能够运行 Windows 11 操作系统,给用户带来了前所未有的强大性能和多样化的应用体验。 首先,让我们来聊聊这款平板电脑的核心亮点之一—— 超薄设计。 亿

    2024年02月22日
    浏览(67)
  • 基于多核处理器的安全固态硬盘实现技术

    摘  要 固态硬盘(Solid State Disk,SSD)主要由硬盘控制芯片和存储芯片构成,利用传统的NAND Flash 特性,以区块写入和擦除的方式进行读写。基于闪存颗粒的固态硬盘具有功耗低、体积小、性能快、稳定性好等特点,广泛用于各类型移动作业领域。出于对数据存储领域存在的

    2024年02月05日
    浏览(43)
  • 基于mips指令集的处理器设计与实现

    1.mips指令集格式 2.mips寄存器特点 1.ALU模块 2.General_Register模块(通用寄存器) 3.instruction_cache模块(指令cache) 4.program_counter模块(程序计数器) 5.control模块(控制译码) MIPS是(Microcomputer without interlocked pipeline stages)的缩写,含义是无互锁流水级微处理器。MIPS 是最早的,最成功的RISC处

    2024年02月06日
    浏览(45)
  • 基于山景BP10128音频处理器高通滤波器算法设计

    + hezkz17进数字音频答疑 山景BP10128音频处理器是一款高性能的数字信号处理器,专门用于音频信号的处理和增强。它采用先进的数字信号处理技术和算法,能够对音频信号进行实时处理,并且具有高效、稳定、可靠等特点。 该处理器具有以下主要功能: 均衡器:支持低音、中

    2024年02月09日
    浏览(47)
  • 基于LoRa技术的STM32处理器无线程序升级系统设计(学习)

    基于LoRa技术的STM32处理器无线程序升级系统设计 设计并实现了一款基于LoRa技术对STM32F767系列处理器通过无线方式升级程序的系统。该系统的硬件结构包括:无线发送端、无线接收端及待升级程序的STM32F767处理器3个部分。 发送端将程序的数据文件通过LoRa技术传递给接收端,

    2024年02月12日
    浏览(38)
  • 【ARMv8 异常模型入门及渐进 1 -- 处理器运行模式及EL3/EL2/EL1学习】

    下篇文章:ARMv8 异常模型入门及渐进 2 - 通用寄存器介绍 在ARM v7架构中的ARM核用 PL 的方式定义执行等级。在ARMv8中ARM核的执行等级划分如下图所示。 表 1-1 ARM v8中一个ARM core 运行时可能具有两种状态:分别为 secure world normal world。 两种状态下都有其对应的 EL0 , EL1 。 而 EL3 是

    2024年02月15日
    浏览(51)
  • 安装 Win11 提示 “ 这台电脑无法运行 Windows 11 ” “ 此版本的Windows不支持该处理器 ” 及跳过 OOBE 强制联网

    “ 这台电脑无法运行 Windows 11 ” “ 此版本的Windows不支持该处理器 ” 当出现“这台电脑无法运行 Windows 11 ”时, 按 Shift+F10 ,输入 展开 HKEY_LOCAL_MACHINESYSTEMSetup 在“LabConfig”项下,创建两个 DWORD(32位)值: “BypassTPMCheck”,赋值 00000001,基数(默认十六进制) “BypassSe

    2024年02月04日
    浏览(174)
  • 【计组实验】基于Verilog的多周期非流水线MIPS处理器设计

    设计多周期非流水线MIPS处理器,包括: 完成多周期MIPS处理器的Verilog代码; 在Vivado软件上进行仿真; 编写MIPS代码验证MIPS处理器; 相关代码及资源的下载地址如下: 本实验的Vivado工程文件和实验文档:Multi-Cycle MIPS Processor.zip(272KB) QtSpim 9.1.23和Vivado 2019.2的安装包:QtSpim Viv

    2024年02月11日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包