hanlp,pkuseg,jieba,cutword分词实践

这篇具有很好参考价值的文章主要介绍了hanlp,pkuseg,jieba,cutword分词实践。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

总结:只有jieba,cutword,baidu lac成功将色盲色弱成功分对,这两个库字典应该是最全的

hanlp[持续更新中]

https://github.com/hankcs/HanLP/blob/doc-zh/plugins/hanlp_demo/hanlp_demo/zh/tok_stl.ipynb

import hanlp
# hanlp.pretrained.tok.ALL # 语种见名称最后一个字段或相应语料库


tok = hanlp.load(hanlp.pretrained.tok.COARSE_ELECTRA_SMALL_ZH)
# coarse和fine模型训练自9970万字的大型综合语料库,覆盖新闻、社交媒体、金融、法律等多个领域,是已知范围内全世界最大的中文分词语料库

# tok.dict_combine = './data/dict.txt'
print(tok(['身高1.60米以上,无色盲色弱具体要求见我校招生章程']))

hanlp,pkuseg,jieba,cutword分词实践,分词,NLP

pkuseg[不再维护了]

https://github.com/lancopku/pkuseg-python

下载最新模型
hanlp,pkuseg,jieba,cutword分词实践,分词,NLP

import pkuseg
c = pkuseg.pkuseg(model_name=r'C:\Users\ymzy\.pkuseg\default_v2') #指定模型路径加载,如果只写模型名称,会报错[Errno 2] No such file or directory: 'default_v2\\unigram_word.txt'
# c = pkuseg.pkuseg(user_dict=dict_path,model_name=r'C:\Users\ymzy\.pkuseg\default_v2') #, postag = True
print(c.cut('身高1.60米以上,无色盲色弱具体要求见我校招生章程'))


hanlp,pkuseg,jieba,cutword分词实践,分词,NLP

jieba[不再维护了]

https://github.com/fxsjy/jieba
hanlp,pkuseg,jieba,cutword分词实践,分词,NLP
hanlp,pkuseg,jieba,cutword分词实践,分词,NLP
HMM中文分词原理

import jieba

# jieba.load_userdict(file_name)
sentence = '身高1.60米以上,无色盲色弱具体要求见我校招生章程'
#jieba分词有三种不同的分词模式:精确模式、全模式和搜索引擎模式:
seg_list = jieba.cut(sentence, cut_all=True) #全模式
print("Full Mode:" + "/".join(seg_list))
seg_list = jieba.cut(sentence, cut_all=False) #精确模式
print("Default Mode:" + "/".join(seg_list))
seg_list = jieba.cut(sentence, HMM=False) #不使用HMM模型
print("/".join(seg_list))
seg_list = jieba.cut(sentence, HMM=True) #使用HMM模型
print("/".join(seg_list))

hanlp,pkuseg,jieba,cutword分词实践,分词,NLP

cutword[202401最新]

https://github.com/liwenju0/cutword
hanlp,pkuseg,jieba,cutword分词实践,分词,NLP

from  cutword import Cutter

cutter = Cutter(want_long_word=True)
res = cutter.cutword("身高1.60米以上,无色盲色弱具体要求见我校招生章程")
print(res)
 

hanlp,pkuseg,jieba,cutword分词实践,分词,NLP

lac【不再维护】

https://github.com/baidu/lac
hanlp,pkuseg,jieba,cutword分词实践,分词,NLP

from LAC import LAC

# 装载分词模型
seg_lac = LAC(mode='seg')
seg_lac.load_customization('./dictionary/dict.txt', sep=None)


texts = [u"身高1.60米以上,无色盲色弱具体要求见我校招生章程"]
seg_result = seg_lac.run(texts)
print(seg_result)

hanlp,pkuseg,jieba,cutword分词实践,分词,NLP文章来源地址https://www.toymoban.com/news/detail-805954.html

到了这里,关于hanlp,pkuseg,jieba,cutword分词实践的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理 Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理

    目录 Android Studio 之 Android 中使用 HanLP 进行句子段落的分词处理(包括词的属性处理)的简单整理 一、简单介绍 二、实现原理 三、注意事项 四、效果预览 五、实现步骤 六、关键代码 附录:在 HanLP 中,Term 对象的 nature 字段表示词性 Android 开发中的一些基础操作,使用整理

    2024年02月12日
    浏览(38)
  • python之jieba分词库使用

    一. 介绍 A. 什么是jieba库 jieba库是一款开源的中文分词工具,能够将中文文本切分成词语。 B. jieba库的特点和优势 支持四种分词模式:精确模式、全模式、搜索引擎模式和paddle模式。 提供自定义词典功能,可以添加、删除词语。 支持提取和词性标注。 提供Tokenize接口

    2024年02月16日
    浏览(39)
  • 分词工具与方法:jieba、spaCy等

    分词是自然语言处理中的一项重要任务,将一段文本划分成一系列有意义的词语或单词,是很多文本处理任务的基础,如文本分类、情感分析、机器翻译等。在中文分词中,jieba是一个常用的分词工具,而在英文分词中,spaCy是一个较为流行的选择。本文将介绍jieba和spaCy的使

    2024年02月15日
    浏览(42)
  • Python中文分词库——jieba的用法

    jieba是优秀的中文分词第三方库。由于中文文本之间每个汉字都是连续书写的,我们需要通过特定的手段来获得其中的每个单词,这种手段就叫分词。而jieba是Python计算生态中非常优秀的中文分词第三方库,需要通过安装来使用它。 jieba库提供了三种分词模式,但实际上要达到

    2023年04月25日
    浏览(52)
  • 数据分析之jieba分词使用详解

    在所有人类语言中,一句话、一段文本、一篇文章都是有一个个的词组成的。词是包含独立意义的最小文本单元,将长文本拆分成单个独立的词汇的过程叫做分词。分词之后,文本原本的语义将被拆分到在更加精细化的各个独立词汇中,词汇的结构比长文本简单,对于计算机

    2024年02月11日
    浏览(53)
  • 【Java】jieba结巴分词器自定义分词词典 超详细完整版

    发现一款很轻量好用的分词器-结巴分词器 分享给大家 不仅可以对常规语句分词,还可以自定义分词内容,很强大!! 源码地址👉:https://github.com/huaban/jieba-analysis 如果是常规的语句,使用这种方式没有问题,如果是复杂语句或带有专业名词的语句请看 下方“复杂语句分词

    2023年04月21日
    浏览(48)
  • python使用jieba分词,词频统计,基本使用

    python采用第三方库进行中文分词,本文章只是记录文章。 1.需要下载第三方库jieba:                 cmd: pip install jieba 2.为了方便测试,在同级目录下,准备一个txt格式文件,文件名随意,这里我也是随便取的:                 文件路径可以是绝对路径,也可以是相对路

    2024年02月07日
    浏览(44)
  • 中文分词库jieba的三种模式介绍

    精准模式 jieba.cut(test_text, cut_all=False): 试图将句子最精确地分开,适合文本分析 全模式 jieba.cut(test_text, cut_all=True): 把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义 搜索引擎模式 jieba.cut_for_search(test_text):在精确模式的基础上,对长词再次切分,提

    2024年02月13日
    浏览(44)
  • Python文本分析之中文分词(jieba库)

    (1)全自动安装 (2)半自动安装 首先登入https://pypi.org/project/jieba/下载安装包 最后解压安装包: python setup py install (3)手动安装 首先登入https://pypi.org/project/jieba/下载安装包 最后把jieba目录放置在site-packages目录内 语法: jieba.cut(sentence, cut_all=False, HMM=True, use_paddle=False) 功能

    2024年02月07日
    浏览(55)
  • 通过Python的jieba库对文本进行分词

    大家好,我是空空star,本篇给大家分享一下通过Python的jieba库对文本进行分词。 Python的jieba库是一个中文分词工具,它可以将一段中文文本分割成一个一个的词语,方便后续的自然语言处理任务,如文本分类、情感分析等。jieba库使用了基于前缀词典的分词方法,能够处理中

    2024年02月05日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包