Go语言数据结构(一)双向链表

这篇具有很好参考价值的文章主要介绍了Go语言数据结构(一)双向链表。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

list容器

Go语言中list容器定义在"container/list"包中,实现了一个双向链表。本文第一部分总结源码包中的方法,第二部分展示使用list包的常见示例用法以及刷题时的用法。

食用指南:先看第二部分的常用示例用法然后再用到时在第一部分找对应的方法。

更多内容以及其他Go常用数据结构的实现在这里,感谢Star:https://github.com/acezsq/Data_Structure_Golang

1. list源码

  • 基础方法
方法 所属类型 作用
New() list包函数 创建一个list
Next() *Element Element 获取当前结点的下一个结点
Prev() *Element Element 获取当前结点的上一个结点
Len() int List 获取链表长度
Front() *Element List 获取链表第一个结点
Back() *Element List 获取链表最后一个结点
  • 插入方法
方法 所属类型 作用
PushFront(v any) *Element List 在链表头部插入一个结点
PushBack(v any) *Element List 在链表末尾插入一个结点
insert(e, at *Element) *Element List 在一个结点之后插入一个新的结点
insertValue(v any, at *Element) *Element List 在一个结点之后插入一个新的结点
InsertBefore(v any, mark *Element) *Element List 在一个结点之前插入一个新的结点
InsertAfter(v any, mark *Element) *Element List 在一个结点之后插入一个新的结点
  • 移除移动方法
方法 所属类型 作用
move(e, at *Element) List 将一个结点移动到另一个结点后面
remove(e *Element) List 从链表移除一个结点
Remove(e *Element) any List 从链表移除一个结点
MoveToFront(e *Element) List 将一个结点移动到链表头部
MoveToBack(e *Element) List 将一个结点移动到链表尾部
MoveBefore(e, mark *Element) List 移动一个结点到另一个结点前面
MoveAfter(e, mark *Element) List 移动一个结点到另一个结点后面
  • 复制链表方法
方法 所属类型 作用
PushBackList(other *List) List 将另一个链表复制到当前链表后面
PushFrontList(other *List) List 将另一个链表复制到当前链表前面

Element类型定义了双向链表中的一个元素结点。next, prev分别表示当前节点指向下一个和上一个节点的指针,list表示当前节点属于哪个双向链表,而Value则表示当前结点存储的具体的值。

// Element is an element of a linked list.
type Element struct {
    // Next and previous pointers in the doubly-linked list of elements.
    // To simplify the implementation, internally a list l is implemented
    // as a ring, such that &l.root is both the next element of the last
    // list element (l.Back()) and the previous element of the first list
    // element (l.Front()).
    next, prev *Element

    // The list to which this element belongs.
    list *List

    // The value stored with this element.
    Value any
}

List类型定义了一个双向链表,空的List类型表示一个待使用的空链表。root是一个Element类型的字段,它代表了链表中的哨兵元素,哨兵元素是一个特殊的元素,它不存储任何实际的值,只是作为链表的起始和结束标记。len是一个整型字段,表示链表中当前的元素数量,不包括哨兵元素。

// List represents a doubly linked list.
// The zero value for List is an empty list ready to use.
type List struct {
	root Element // sentinel list element, only &root, root.prev, and root.next are used
	len  int     // current list length excluding (this) sentinel element
}

获取一个结点的前后结点。

// Next returns the next list element or nil.
func (e *Element) Next() *Element {
	if p := e.next; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

// Prev returns the previous list element or nil.
func (e *Element) Prev() *Element {
	if p := e.prev; e.list != nil && p != &e.list.root {
		return p
	}
	return nil
}

创建结点。

// Init initializes or clears list l.
func (l *List) Init() *List {
	l.root.next = &l.root
	l.root.prev = &l.root
	l.len = 0
	return l
}

// New returns an initialized list.
func New() *List { return new(List).Init() }
package main

import "container/list"

func main() {
	list1 := list.New()
    // TODO
}

获取双向链表的长度,时间复杂度时O(1)

// Len returns the number of elements of list l.
// The complexity is O(1).
func (l *List) Len() int { return l.len }

获取当前链表的第一个和最后一个结点。

// Front returns the first element of list l or nil if the list is empty.
func (l *List) Front() *Element {
	if l.len == 0 {
		return nil
	}
	return l.root.next
}

// Back returns the last element of list l or nil if the list is empty.
func (l *List) Back() *Element {
	if l.len == 0 {
		return nil
	}
	return l.root.prev
}

实现对List类型的延迟初始化。具体来说,它用于在第一次访问List对象时,检查是否已经进行了初始化,如果没有,则执行初始化操作。

// lazyInit lazily initializes a zero List value.
func (l *List) lazyInit() {
	if l.root.next == nil {
		l.Init()
	}
}

在一个结点之后插入一个新的结点,输入是结点类型对象。另外需要修改指针以及新节点归属的链表以及链表的长度。

// insert inserts e after at, increments l.len, and returns e.
func (l *List) insert(e, at *Element) *Element {
	e.prev = at
	e.next = at.next
	e.prev.next = e
	e.next.prev = e
	e.list = l
	l.len++
	return e
}

添加一个结点,但是输入的时结点的值信息。

// insertValue is a convenience wrapper for insert(&Element{Value: v}, at).
func (l *List) insertValue(v any, at *Element) *Element {
	return l.insert(&Element{Value: v}, at)
}

从链表中删除一个结点,输入是结点类型对象。

// remove removes e from its list, decrements l.len
func (l *List) remove(e *Element) {
	e.prev.next = e.next
	e.next.prev = e.prev
	e.next = nil // avoid memory leaks
	e.prev = nil // avoid memory leaks
	e.list = nil
	l.len--
}

移动一个结点到另一个结点后面。

// move moves e to next to at.
func (l *List) move(e, at *Element) {
	if e == at {
		return
	}
	e.prev.next = e.next
	e.next.prev = e.prev

	e.prev = at
	e.next = at.next
	e.prev.next = e
	e.next.prev = e
}

从链表中移除一个结点并返回该结点的值。

// Remove removes e from l if e is an element of list l.
// It returns the element value e.Value.
// The element must not be nil.
func (l *List) Remove(e *Element) any {
	if e.list == l {
		// if e.list == l, l must have been initialized when e was inserted
		// in l or l == nil (e is a zero Element) and l.remove will crash
		l.remove(e)
	}
	return e.Value
}

在链表头或者尾部插入一个结点,输入时结点中存储具体的值。

// PushFront inserts a new element e with value v at the front of list l and returns e.
func (l *List) PushFront(v any) *Element {
	l.lazyInit()
	return l.insertValue(v, &l.root)
}

// PushBack inserts a new element e with value v at the back of list l and returns e.
func (l *List) PushBack(v any) *Element {
	l.lazyInit()
	return l.insertValue(v, l.root.prev)
}

在一个结点前和在一个结点后面插入一个结点,输入是结点的值。

// InsertBefore inserts a new element e with value v immediately before mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertBefore(v any, mark *Element) *Element {
	if mark.list != l {
		return nil
	}
	// see comment in List.Remove about initialization of l
	return l.insertValue(v, mark.prev)
}

// InsertAfter inserts a new element e with value v immediately after mark and returns e.
// If mark is not an element of l, the list is not modified.
// The mark must not be nil.
func (l *List) InsertAfter(v any, mark *Element) *Element {
	if mark.list != l {
		return nil
	}
	// see comment in List.Remove about initialization of l
	return l.insertValue(v, mark)
}

将一个结点移动到链表头尾,某个结点前后。

// MoveToFront moves element e to the front of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToFront(e *Element) {
	if e.list != l || l.root.next == e {
		return
	}
	// see comment in List.Remove about initialization of l
	l.move(e, &l.root)
}

// MoveToBack moves element e to the back of list l.
// If e is not an element of l, the list is not modified.
// The element must not be nil.
func (l *List) MoveToBack(e *Element) {
	if e.list != l || l.root.prev == e {
		return
	}
	// see comment in List.Remove about initialization of l
	l.move(e, l.root.prev)
}

// MoveBefore moves element e to its new position before mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveBefore(e, mark *Element) {
	if e.list != l || e == mark || mark.list != l {
		return
	}
	l.move(e, mark.prev)
}

// MoveAfter moves element e to its new position after mark.
// If e or mark is not an element of l, or e == mark, the list is not modified.
// The element and mark must not be nil.
func (l *List) MoveAfter(e, mark *Element) {
	if e.list != l || e == mark || mark.list != l {
		return
	}
	l.move(e, mark)
}

将一个链表复制到另一个链表的后面或者前面。

// PushBackList inserts a copy of another list at the back of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushBackList(other *List) {
	l.lazyInit()
	for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
		l.insertValue(e.Value, l.root.prev)
	}
}

// PushFrontList inserts a copy of another list at the front of list l.
// The lists l and other may be the same. They must not be nil.
func (l *List) PushFrontList(other *List) {
	l.lazyInit()
	for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
		l.insertValue(e.Value, &l.root)
	}
}

2. 使用示例

  • 创建链表,添加结点,遍历链表
package main

import (
	"container/list"
	"fmt"
)

func main() {
	// 创建一个新的链表
	l := list.New()

	// 在链表尾部添加元素
	l.PushBack(1)
	l.PushBack(2)
	l.PushBack(3)

	// 在链表头部添加元素
	l.PushFront(0)

	// 遍历链表并打印元素值
	for e := l.Front(); e != nil; e = e.Next() {
		fmt.Println(e.Value) // 0 1 2 3
	}

	// 获取链表长度
	fmt.Println("Length:", l.Len()) // 4

	// 删除指定元素
	elementToRemove := l.Front().Next()
	l.Remove(elementToRemove)

	// 在指定元素之前插入元素
	elementToInsertBefore := l.Back()
	l.InsertBefore(4, elementToInsertBefore)

	// 在指定元素之后插入元素
	elementToInsertAfter := l.Front()
	l.InsertAfter(5, elementToInsertAfter)

	// 遍历链表并打印元素值
	for e := l.Front(); e != nil; e = e.Next() {
		fmt.Println(e.Value) // 0 5 2 4 3
	}

	// 清空链表
	l.Init()

	// 遍历链表并打印元素值
	for e := l.Front(); e != nil; e = e.Next() {
		fmt.Println(e.Value) //
	}
}

  • 使用反射获取结点中存储的值

从下面Element类型的定义中可以看到Value的类型时any类型,也就是空接口类型。所以在获取到结点的Value时需要通过反射获取具体的值类型用于后续任务。

// Element is an element of a linked list.
type Element struct {
    // Next and previous pointers in the doubly-linked list of elements.
    // To simplify the implementation, internally a list l is implemented
    // as a ring, such that &l.root is both the next element of the last
    // list element (l.Back()) and the previous element of the first list
    // element (l.Front()).
    next, prev *Element

    // The list to which this element belongs.
    list *List

    // The value stored with this element.
    Value any
}

比如LeetCode上的LFU这道题中使用双链表完成时,e := node.Value.(*entry)这行代码通过反射获取到结点值的具体的类型,这样才能使得后续使用e时是*entry类型。文章来源地址https://www.toymoban.com/news/detail-806179.html

type entry struct {
    key, value, freq int
}

type LFUCache struct {
    capacity int
    minFreq int
    keyToNode map[int]*list.Element
    freqToList map[int]*list.List
}


func Constructor(capacity int) LFUCache {
    return LFUCache{
        capacity: capacity,
        keyToNode: map[int]*list.Element{},
        freqToList: map[int]*list.List{},
    }
}

func (c *LFUCache) pushfront(e *entry) {
    if _, ok := c.freqToList[e.freq]; !ok {
        c.freqToList[e.freq] = list.New()
    }
    c.keyToNode[e.key] = c.freqToList[e.freq].PushFront(e)
}

func (c *LFUCache) getEntry(key int) *entry {
    node := c.keyToNode[key]
    if node == nil {
        return nil
    }
    e := node.Value.(*entry)
    lst := c.freqToList[e.freq]
    lst.Remove(node)
    if lst.Len()==0 {
        delete(c.freqToList,e.freq)
        if c.minFreq == e.freq {
            c.minFreq++
        }
    }
    e.freq++
    c.pushfront(e)
    return e
}

func (c *LFUCache) Get(key int) int {
    if e:=c.getEntry(key); e!=nil {
        return e.value
    } else {
        return -1
    }
}


func (c *LFUCache) Put(key int, value int)  {
    if e := c.getEntry(key); e!=nil {
        e.value = value
        return
    }
    if len(c.keyToNode) == c.capacity {
        lst := c.freqToList[c.minFreq]
        delete(c.keyToNode,lst.Remove(lst.Back()).(*entry).key)
        if lst.Len()==0 {
            delete(c.freqToList,c.minFreq)
        }
    }
    c.pushfront(&entry{key,value,1})
    c.minFreq = 1
}


/**
 * Your LFUCache object will be instantiated and called as such:
 * obj := Constructor(capacity);
 * param_1 := obj.Get(key);
 * obj.Put(key,value);
 */

到了这里,关于Go语言数据结构(一)双向链表的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【数据结构】—C语言实现双向链表(超详细!)

                                          食用指南:本文在有C基础的情况下食用更佳                                       🔥 这就不得不推荐此专栏了:C语言                                     🍀 双向链表 前 置知识 :单链表      

    2024年02月13日
    浏览(49)
  • 【数据结构】C语言实现双向链表(带头结点、循环)

    结点定义: 接口定义: 我们将申请结点的代码封装成函数,方便后续使用 由于是带头结点的双向链表,因此在使用链表前,我们需要对链表进行初始化。 遍历链表,值得说的是,带头结点的双向链表的循环结束条件是 cur != phead 尾插时,需要先找到尾结点,然后将新结点插

    2024年02月03日
    浏览(68)
  • 【数据结构初阶】四、线性表里的链表(带头+双向+循环 链表 -- C语言实现)

    ========================================================================= 相关代码gitee自取 : C语言学习日记: 加油努力 (gitee.com)  ========================================================================= 接上期 : 【数据结构初阶】三、 线性表里的链表(无头+单向+非循环链表 -- C语言实现)-CSDN博客  ====

    2024年02月08日
    浏览(42)
  • 『初阶数据结构 • C语言』⑨ - 基于结点的数据结构——链表(单链表&&双向循环链表)附完整源码

      本章内容 1.什么是链表 2.链表常见几种形式 3.无头单向非循环链表的实现 3.1结点结构的定义 3.2函数接口的实现 3.2.1尾插 3.2.2尾删 4. 带头双向循环链表的实现 4.1结点结构的定义 4.2函数接口的实现 5.两种链表的差异 ①尾插与尾删的时间复杂度 ②头插与头删的时间复杂度 ③

    2024年02月16日
    浏览(78)
  • 链接未来:深入理解链表数据结构(二.c语言实现带头双向循环链表)

    上篇文章简述讲解了链表的基本概念并且实现了无头单向不循环链表:链接未来:深入理解链表数据结构(一.c语言实现无头单向非循环链表)-CSDN博客 那今天接着给大家带来带头双向循环链表的实现 : 头文件DoubleList.h:用来基础准备(常量定义,typedef),链表表的基本框架

    2024年01月16日
    浏览(60)
  • 数据结构_链表_双向循环链表的初始化、插入、删除、修改、查询打印(基于C语言实现)

    版本: 2024年4月26日 V1.0 发布于博客园 目录 目录 双向循环链表公式 初始化双向循环链表 构建双向循环链表结点 创建一个空链表(仅头结点) 创建一个新结点 插入数据 头插 中插 尾插 删除数据 头删 中删 尾删 查询打印数据 遍历打印 测试 测试结果: 完整代码 DoubleCirLList.h

    2024年04月27日
    浏览(51)
  • 数据结构-链表结构-双向链表

    双向链表也叫双链表,与单向链表不同的是,每一个节点有三个区域组成:两个指针域,一个数据域 前一个指针域:存储前驱节点的内存地址 后一个指针域:存储后继节点的内存地址 数据域:存储节点数据 以下就是双向链表的最基本单位 节点的前指针域指向前驱,后指针

    2024年02月04日
    浏览(44)
  • 【数据结构】双向奔赴的爱恋 --- 双向链表

    关注小庄 顿顿解馋๑ᵒᯅᵒ๑ 引言:上回我们讲解了单链表(单向不循环不带头链表),我们可以发现他是存在一定缺陷的,比如尾删的时候需要遍历一遍链表,这会大大降低我们的性能,再比如对于链表中的一个结点我们是无法直接访问它的上一个结点,那有什么解决方法呢

    2024年04月08日
    浏览(93)
  • 数据结构——双向链表

    🍇系列专栏:🌙数据结构 🍉  欢迎关注:👍点赞🍃收藏🔥留言 🍎 博客主页:🌙_麦麦_的博客_CSDN博客-领域博主 🌙如果我们都不能够拥有黑夜,又该怎样去仰望星空?   目录 一、前言 二、正文——双向链表的实现 2.1模块化 2.2 数据类型与结构体定义  2.3链表的初始化

    2024年02月02日
    浏览(46)
  • 数据结构---双向链表

    单向链表:一块内存指向下一个内存。 单链表存在一些缺陷: 1.查找速度慢。 2.不能从后往前找。 3.找不到前驱。 链表的结构分为8种: 1.单向和双向 2.带头和不带头 带头的链表有一个带哨兵位的头结点,这个节点不存储有效数据。 好处 :尾插更方便,不需要二级指针了,

    2024年02月02日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包