简单的损失函数

这篇具有很好参考价值的文章主要介绍了简单的损失函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、功能:

  • 损失函数用来衡量真实值与预测值之间的差异。

二、常用损失函数:

1.均方损失函数:

简单的损失函数,机器学习,深度学习

  • 损失 = 真实值-预测值的平方
  • 1/2的作用是幂函数求导时可以与落下的2抵消,方便计算。
  • 当预测值距真实值较大,梯度较大;越接近真实值,梯度越小。

2.绝对值损失函数:

简单的损失函数,机器学习,深度学习

  • 损失 = 真实值-预测值的绝对值
  • 当预测值距真实值较大,梯度为常数;越接近真实值,梯度变化不稳定。

3.Huber’s Robust损失函数:

简单的损失函数,机器学习,深度学习文章来源地址https://www.toymoban.com/news/detail-806651.html

  • 结合均方损失和绝对值损失优点
  • 当预测值距真实值较大,梯度为常数;越接近真实值,梯度越小。

到了这里,关于简单的损失函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 机器学习——损失函数(lossfunction)

    问:非监督式机器学习算法使用样本集中的标签构建损失函数。   答:错误 。非监督式机器学习算法不使用样本集中的标签构建损失函数。这是因为非监督式学习算法的目的是在没有标签的情况下发现数据集中的特定结构和模式,因此它们依赖于不同于监督式学习的算法。

    2024年02月04日
    浏览(44)
  • 深度学习:Pytorch常见损失函数Loss简介

    此篇博客主要对深度学习中常用的损失函数进行介绍,并结合Pytorch的函数进行分析,讲解其用法。 L1 Loss计算预测值和真值的平均绝对误差。 L o s s ( y , y ^ ) = ∣ y − y ^ ∣ Loss(y,hat{y}) = |y-hat{y}| L oss ( y , y ^ ​ ) = ∣ y − y ^ ​ ∣ Pytorch函数: 参数: size_average (bool, optional) –

    2024年02月13日
    浏览(43)
  • 深度学习中常用的损失函数(一) —— MSELoss()

            该函数叫做平均平方误差,简称均方误差。它的英文名是mean squared error,该损失函数是挨个元素计算的。该元素的公式如下:                                  其连个输入参数,第一个参数是输出的参数,第二个参数是与之对比的参数。        loss= torch.nn.MSE

    2024年02月12日
    浏览(51)
  • [深度学习实战]基于PyTorch的深度学习实战(上)[变量、求导、损失函数、优化器]

    PyTorch——开源的Python机器学习库   用了Matlab搭建神经网络才愈发感觉\\\" 人生苦短,我用PyTorch “是多么正确。毕竟 新的神经网络架构还是得自己一点点敲 ,现在是一点都笑不出来了, 指望Matlab提供的老框架和训练算法也做不出什么算法方法的突破,顶多就是在实现功能上

    2024年02月17日
    浏览(43)
  • 机器学习分类,损失函数中为什么要用Log,机器学习的应用

    目录 损失函数中为什么要用Log 为什么对数可以将乘法转化为加法? 机器学习(Machine Learning) 机器学习的分类 监督学习 无监督学习 强化学习 机器学习的应用 应用举例:猫狗分类 1. 现实问题抽象为数学问题 2. 数据准备 3. 选择模型 4. 模型训练及评估 5.预测结果 推荐阅读

    2024年02月11日
    浏览(42)
  • 【机器学习】P2 线性回归、损失函数与梯度下降

    线性回归简单的说就是线性函数; 线性回归属于机器学习 回归问题; 在线性回归建立的线性关系的模型中,假设目标变量和自变量之间存在一种线性关系,模型的目标是找到最佳的拟合线,是的模型对于未知的数据能够进行最准确的预测; 线性回归模型的一般形式为: y

    2023年04月08日
    浏览(41)
  • PyTorch各种损失函数解析:深度学习模型优化的关键(2)

    目录 详解pytorch中各种Loss functions mse_loss 用途 用法 使用技巧 注意事项 参数 数学理论公式 代码演示  margin_ranking_loss 用途 用法 使用技巧 注意事项 参数 数学理论公式  代码演示 multilabel_margin_loss 用途 用法 使用技巧 注意事项 参数 数学理论公式 代码演示 multilabel_soft_margin_

    2024年01月19日
    浏览(65)
  • 深度学习(23):SmoothL1Loss损失函数

    SmoothL1Loss是一种常用的损失函数,通常用于回归任务中,其相对于均方差(MSE)损失函数的优势在于对异常值(如过大或过小的离群点)的惩罚更小,从而使模型更加健壮。 SmoothL1Loss的公式为: l o s s ( x , y ) = { 0.5 ( x − y ) 2 if  ∣ x − y ∣ 1 ∣ x − y ∣ − 0.5 otherwise loss(x,y) = b

    2024年02月02日
    浏览(42)
  • 深度学习之PyTorch实战(5)——对CrossEntropyLoss损失函数的理解与学习

      其实这个笔记起源于一个报错,报错内容也很简单,希望传入一个三维的tensor,但是得到了一个四维。 查看代码报错点,是出现在pytorch计算交叉熵损失的代码。其实在自己手写写语义分割的代码之前,我一直以为自己是对交叉熵损失完全了解的。但是实际上还是有一些些

    2023年04月09日
    浏览(39)
  • 三 动手学深度学习v2 —— Softmax回归+损失函数+图片分类数据集

    softmax回归 损失函数 1. softmax回归 回归vs分类: 回归估计一个连续值 分类预测一个离散类别 从回归到多类分类 回归 单连续数值输出 自然区间R 跟真实值的误差作为损失 分类 通常多个输出 输出i是预测为第i类的置信度 总结: 2. 损失函数 L2 loss 均方损失 l ( y , y ′ ) = 1 2 ( y −

    2024年02月14日
    浏览(37)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包