显著性检验【t-test、方差分析、ks检验】

这篇具有很好参考价值的文章主要介绍了显著性检验【t-test、方差分析、ks检验】。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

显著性检验【t-test、方差分析、ks检验】

0、目录

1显著性检验基本定义(what?)
2.使用显著性检验的意义(why? )
3.显著性检验的具体操作流程(how? )

1、显著性检验基本定义

  • 统计假设检验(Statistical hypothesis testing)
    • 事先对总体(随机变量)的 参数或总体分布形式做出一个假设,然后利用样本信息来判断这个假设是否合理
  • 显著性检验(significance test)
    • 统计假设检验的一种
    • 显著性检验是用于检测科学实验中实验组与对照组之间是否有差异以及差异是否显著的办法。
  • 在使用显著性检验之前必须先进行统计假设,也就是无效假设/零假设/原假设
  • 无效假设/零假设/原假设(null hypothesis)
    • 数据结果之间本身不存在显著性差异
    • 指进行统计检验时预先建立的假设。 零假设成立时,有关统计量应服从已知的某种概率分布。
    • 当统计量的计算值落入否定域时,可知发生了小概率事件,应否定原假设。
  • 若原假设为真,而检验的结论却劝你放弃原假设。此时,我们把这种错误称之为第一类错误。通常把第一类错误出现的概率记为α
  • 若原假设不真,而检验的结论却劝你采纳原假设。此时,我们把这种错误称之为第二类错误。通常把第二类错误出现的概率记为β
  • 通常只限定犯第一类错误的最大概率α, 不考虑犯第二类错误的概率β。我们把这样的假设检验称为显著性检验,概率α称为显著性水平。

2.使用显著性检验的意义

  • 实例讲解
    • 一个球迷想要评价c罗和梅西的网络影响力,下列分别为二人在2017年每月社交网络发布后获得的点赞量/评论量,想要知道二人是否有存在明显的差异
    • CR7= {23,25,26,27,23,24,22,23,25,29,30,32}
    • Messi= {24,25,23,26,27,25,25,28,30,31,29,28}
    • 根据零假设的定义,作出“两人的点赞量没有显著差异”的假设,最后计算得出,方差检验的p_value= 0.459,那也就意味着两人的点赞量并没有明显的差异

3、显著性检验的具体操作流程

方差分析
  • 方差分析(Analysis of Variance,简称ANOVA),又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验
  • 在显著性水平α =0.05的情况下,p>0.05接受原假设,p值<0.05拒绝原假设
  • 原假设是二人间不存在显著性差异,由于p=0.459>0.05,所以接受原假设,即二人间不存在显著性差异
  • 如果这里的p值小于0.05,那么就要拒绝原假设,即二人间存在显著性差异
  • p_value的另一种理解
    • 实例中的p_value=0.459,意思就是说偶然因素导致数据发生这种差异的概率是0.459,跟0.05一比大好多。那么就是说偶然因素很有可能导致了这种差异,所以数据本身之间是不存在差异的。
    '''
    
     方差齐性检验  在显著性水平α =0.05的情况下,p>0.05接受原假设, 所以接受原假设,即样本集B和样本集H间不存在显著性差异
    
    '''
    
    from scipy import stats  # 导入相应模块
    
    v3=[23,25,26,27,23,24,22,23,25,29,30,32]
    v4=[24,25,23,26,27,25,25,28,30,31,29,28]
    
    stats.levene(v3,v4, center="mean")
    fVal, pSD = stats.levene(v3,v4, center="mean")
    
    print("ANOVA-0",fVal, pSD)
    

    输出结果:
    0.5671069450362157
    0.45939425229350794

T 检验(T-Test)
  • T 检验用于确定两个变量的均值之间是否存在显著差异,并判断它们是否属于同一分布
  • 双尾测试
  • 函数 ttest_ind() 获取两个相同大小的样本,并生成 t 统计和 p 值的元组
  • 查找给定值 v1 和 v2 是否来自相同的分布:
    '''
    
     T-test 在显著性水平α =0.05的情况下,p>0.05接受原假设, 所以接受原假设,即样本集B和样本集H间不存在显著性差异
    
    '''
    
    v3=[23,25,26,27,23,24,22,23,25,29,30,32]
    v4=[24,25,23,26,27,25,25,28,30,31,29,28]
    
    import numpy as np
    from scipy.stats import ttest_ind
    from scipy import stats
    
    res = ttest_ind(v3, v4)
    print(res)
    

    输出结果
    Ttest_indResult(statistic=-0.8599394154935148, pvalue=0.3990967787539713)

KS 检验
  • KS 检验用于检查给定值是否符合分布

  • 该函数接收两个参数;测试的值和 CDF

    • CDF 为累积分布函数(Cumulative Distribution Function),又叫分布函数。CDF 可以是字符串,也可以是返回概率的可调用函数。
  • 可以用作单尾或双尾测试,默认情况下它是双尾测试。 我们可以将参数替代作为两侧、小于或大于其中之一的字符串传递。

  • 查找给定值是否符合正态分布

    import numpy as np
    from scipy.stats import kstest
     
    v = np.random.normal(size=100)
     
    res = kstest(v, 'norm')
     
    print(res)
    

    输出结果
    KstestResult
    (statistic=0.047798701221956841, pvalue=0.97630967161777515)文章来源地址https://www.toymoban.com/news/detail-806908.html

到了这里,关于显著性检验【t-test、方差分析、ks检验】的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 时间序列之单位根检验+显著性检验+固定/随机效应模型选择

    确定时间分隔、开始时间、结束时间 在hive中创建该表 计算每段时间内申购和赎回的量 查询每段时间开始和结束时的万份收益,计算净收益率 在面板数据和序列数据中,如果存在单位根,会产生 伪回归 等严重后果,所以必须对每个变量进行单位根检验,这样能够保证每个变

    2024年02月04日
    浏览(60)
  • 假设检验中的显著性水平与p值

    假设检验是根据样本信息,提出对于总体信息的假设,并且对假设的正确性进行推断。 推断的依据是假设成立发生的概率,并且设置显著性水平 α alpha α (取值一般为0.01,0.05,0.1)。 在判断原假设过程中,有两种方法。 第一、统计量的比较。由样本数值生成对应的统计量,

    2024年02月13日
    浏览(40)
  • 知识点2 假设检验 显著水平和拒绝域的入门原理解释

    笔记来源:通俗统计学原理入门5 假设检验 显著水平 significance level α 拒绝域 rejection region_哔哩哔哩_bilibili 目录 摘要 一、假设检验 二、显著水平、拒绝域和假设检验相关生活实例 1.显著水平和拒绝域 (1) 显著水平 (2) 拒绝域 2.实例应用 本文分别介绍了假设检验(Hypothesis Test

    2024年02月11日
    浏览(40)
  • 【统计】假设检验方法 一、方差齐性检验

    1. 不同检验方法 最小样本量 的确认 由统计量反推得到 2. 检验方法 方差齐性检验(F检验): 两个独立样本的方差差异检验,反映了平均值的代表性。方差齐次检验前提要近似正态分布。 正态性检验: 是否符合正态分布 似然比检验: 比较样本不同似然函数,检验其分布 参

    2023年04月14日
    浏览(49)
  • ./test.sh 和 . test.sh的区别,案例分析

    test.sh 执行 . test.sh , 输出如下: 此时,修改test.sh,将赋值操作全部去掉,同样执行 . test.sh 输出如下: myMap明明是个空的,为什么还能打印出数据??? 使用点号( . )和空格来执行一个脚本,后面跟着脚本的文件名。这种方式在Shell中被称为“点命令”(Dot command)或“

    2024年02月13日
    浏览(34)
  • R语言中使用ggplot2绘制散点图箱线图,附加显著性检验

    散点图可以直观反映数据的分布,箱线图可以展示均值等关键统计量,二者结合能够清晰呈现数据蕴含的信息。 本篇笔记主要内容:介绍R语言中绘制箱线图和散点图的方法,以及二者结合展示教程,添加差异比较显著性分析,绘制如上结果图。 在实际数据可视化过程中,输

    2024年03月20日
    浏览(43)
  • 概率统计·假设检验【正态总体均值的假设检验、正态总体方差的假设检验】

    第1类错误(弃真):当原假设H 0 为真,观察值却落入拒绝域,因而拒 绝H 0 这类错误是“以真为假” 犯第一类错误的概率=显著性水平α 第2类错误(取伪):当原假设H 0 不真,而观察值却落入接受域,因而 接受H 0 以假为真 若H 0 为真,则样本值落入拒绝域{Zz α/2 }的概率是

    2024年02月08日
    浏览(59)
  • R语言绘图丨论文中最常用箱线图绘制教程,自动进行显著性检验和误差线标注

    在科研论文绘图中,对于多组数据进行比较一般采用箱线图的方法,今天分享一下这个经典数据可视化方法,从零开始绘制一张带 误差棒 并自动计算 显著性 比较结果的 箱线图 。 数据分布信息: 箱线图能够直观地展示数据的分布情况,包括数据的中位数、上下四分位数和

    2024年02月12日
    浏览(49)
  • Stata中异方差检验(代码直接食用)

    在线性回归模型的经典假设下,运用最小二乘法回归估计得到的才是最优线性无偏估计量(BLUE)。在实际问题中,完全满足基本假设的情况并不多,不满足的基本假设的情况下称为 基本假定违背 ,而 异方差 就是其中一种。 对于异方差的检验有很多种,这里我们介绍3种方法

    2024年02月02日
    浏览(47)
  • 假设检验(hypothesis testing)

    首先,什么是假设?在数理推断中,总体分布通常是未知的,包含了两类,一类是分布类型未知,一类是分布类型已知,但参数未知, 假设 就是对总体分布的一种推断,比如假设总体服从正态分布,假设正态分布的均值是500。根据未知类型,分为非参数假设和参数假设。 假

    2024年02月11日
    浏览(42)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包