1979-A threshold selection method from gray-level histograms

这篇具有很好参考价值的文章主要介绍了1979-A threshold selection method from gray-level histograms。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

1 论文简介

《A threshold selection method from gray-level histograms》是由日本学者大津于 1979 年发表在 IEEE TRANSACTIONS ON SYSTEMS 上的一篇论文。该论文提出了一种基于图像灰度直方图的阈值化方法,计算简单,且不受图像亮度和对比度的影响,被称为阈值分割领域的最佳算法之一。以下称 Otsu 法。

2 算法原理

假设原始图像的最大灰度级为 L L L,第 i i i 级的像素数用 n i n_i ni 表示,那么原始图像的总像素数 N N N 计算如下:
N = n 1 + n 2 + . . . + n i + . . . + n L (1) {N=n_1+n_2+...+n_i+...+n_L} \tag{1} N=n1+n2+...+ni+...+nL(1)归一化直方图 p i p_i pi 表示如下:
p i = n i / N , p i ≥ 0 , ∑ i = 1 L p i = 1 (2) {p_i=n_i/N},{\quad \quad} p_i \geq 0,{\sum_{i=1}^Lp_i=1} \tag{2} pi=ni/N,pi0,i=1Lpi=1(2)现假设通过 k k k 级阈值将直方图分为 C 0 C_0 C0 C 1 C_1 C1 两类(目标和背景),则 C 0 C_0 C0 C 1 C_1 C1 的累积概率、均值分别为:
ω 0 = ∑ i = 1 k p i (3) \omega_0={\sum_{i=1}^{k}p_i} \tag{3} ω0=i=1kpi(3) ω 1 = ∑ i = k + 1 L p i (4) \omega_1={\sum_{i=k+1}^{L}p_i} \tag{4} ω1=i=k+1Lpi(4) μ 0 = ∑ i = 1 k i p i / ω 0 (5) \mu_0={\sum_{i=1}^{k}ip_i/{\omega_0}} \tag{5} μ0=i=1kipi/ω0(5) μ 1 = ∑ i = k + 1 L i p i / ω 1 (6) \mu_1={\sum_{i=k+1}^{L}ip_i/{\omega_1}} \tag{6} μ1=i=k+1Lipi/ω1(6) k k k 级阈值下的类间方差 σ B \sigma_B σB 为:
σ B = ω 0 ω 1 ( μ 1 − μ 0 ) 2 (7) \sigma_B={\omega_0}{\omega_1}{\left({\mu_1}-{\mu_0}\right)}^2 \tag{7} σB=ω0ω1(μ1μ0)2(7)最佳阈值 k ∗ k^* k 计算如下:
σ B ( k ∗ ) = max ⁡ 1 ≤ k < L σ B ( k ) (8) {\sigma_B\left(k^*\right)}={\max_{1{\leq}k<L}}{\sigma_B\left(k\right)} \tag{8} σB(k)=1k<LmaxσB(k)(8)值得注意的是,该方法非常容易拓展至多阈值的情形。

3 实验结果

1979-A threshold selection method from gray-level histograms,阈值分割,matlab,图像处理,阈值分割

4 参考文献

[1] Otsu N. A threshold selection method from gray-level histograms[J]. IEEE transactions on systems, man, and cybernetics, 1979, 9(1): 62-66.

5 代码链接

代码链接:https://mbd.pub/o/bread/ZZqTmZZt。文章来源地址https://www.toymoban.com/news/detail-806911.html

到了这里,关于1979-A threshold selection method from gray-level histograms的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包