[ 注意力机制 ] 经典网络模型1——SENet 详解与复现

这篇具有很好参考价值的文章主要介绍了[ 注意力机制 ] 经典网络模型1——SENet 详解与复现。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


🤵 Author :Horizon Max

编程技巧篇:各种操作小结

🎇 机器视觉篇:会变魔术 OpenCV

💥 深度学习篇:简单入门 PyTorch

🏆 神经网络篇:经典网络模型

💻 算法篇:再忙也别忘了 LeetCode


🚀 Squeeze-and-Excitation Networks

Squeeze :挤压     Excitation :激励 ;

Squeeze-and-Excitation Networks 简称 SENet ,由 Momenta 和 牛津大学 的Jie Hu等人 提出的一种新的网络结构;

目标是通过建模 卷积特征通道之间的相互依赖关系 来提高网络的表示能力;

在2017年最后一届 ImageNet 挑战赛(ILSVRC) classification 任务中获得 冠军,将错误率降低到 2.251% ;

senet复现,经典网络模型,人工智能,深度学习,注意力机制,SENet,神经网络

🔗 论文地址:Squeeze-and-Excitation Networks


🚀 SENet 详解

🎨 Squeeze-and-Excitation block

Squeeze-and-Excitation block

senet复现,经典网络模型,人工智能,深度学习,注意力机制,SENet,神经网络

对于任意给定的变换: Ftr :X → U ,其中 X ∈ R H’xW’xC’ , U ∈ R HxWxCFtr 用作一个卷积算子 ;


🚩 Squeeze: Global Information Embedding

挤压:全局信息嵌入

(1)Squeeze :特征U通过 squeeze 压缩操作,将跨空间维度H × W的特征映射进行聚合,生成一个通道描述符,HxWxC → 1x1xC
将 全局空间信息 压缩到上述 通道描述符 中,使来这些 通道描述符 可以被 其输入的层 利用,这里采用的是 global average pooling

senet复现,经典网络模型,人工智能,深度学习,注意力机制,SENet,神经网络

🚩 Excitation: Adaptive Recalibration

激励:自适应调整

(2)Excitation :每个通道通过一个 基于通道依赖 的自选门机制 来学习特定样本的激活,使其学会使用全局信息,有选择地强调信息特征,并抑制不太有用的特征,这里采用的是 sigmoid ,并在中间嵌入了 ReLU 函数用于限制模型的复杂性和帮助训练 ;

通过 两个全连接层(FC) 构成的瓶颈来参数化门控机制,即 W1 用于降低维度,W2 用于维度递增 ;

senet复现,经典网络模型,人工智能,深度学习,注意力机制,SENet,神经网络

(3)Reweight :将 Excitation 输出的权重通过乘法逐通道加权到输入特征上;


总的来说 SE Block 就是在 Layer 的输入和输出之间添加结构: global average pooling - FC - ReLU - FC- sigmoid

SE block 的灵活性意味着它可以直接应用于标准卷积以外的转换,通过将 SE block 集成到任何复杂模型当中来开发SENet;


🚩 在非残差网络中的应用

应用于 非残差网络 Inception network 当中,形成 SE-Inception module

非残差网络结构框图(Inception block)

senet复现,经典网络模型,人工智能,深度学习,注意力机制,SENet,神经网络

Scale : 改变(文字、图片)的尺寸大小

🚩 在残差网络中的应用

应用于 残差网络 Residual network 当中,形成 SE-ResNet module


残差网络结构框图(Residual Block)

senet复现,经典网络模型,人工智能,深度学习,注意力机制,SENet,神经网络

论文中对 SE block 的应用用于实验对比:

SE-ResNet-50 网络的准确性优于 ResNet-50 和模型深化版的 ResNet101 网络 ;
对于224 × 224像素的输入图像,ResNet-50 需要164 ms,而 SE-ResNet-50 需要167 ms ;


🚀 SENet 复现

这里实现的是 SE-ResNet 系列网络 :

# Here is the code :

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchinfo import summary


class SE_Block(nn.Module):                         # Squeeze-and-Excitation block
    def __init__(self, in_planes):
        super(SE_Block, self).__init__()
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.conv1 = nn.Conv2d(in_planes, in_planes // 16, kernel_size=1)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_planes // 16, in_planes, kernel_size=1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        x = self.avgpool(x)
        x = self.conv1(x)
        x = self.relu(x)
        x = self.conv2(x)
        out = self.sigmoid(x)
        return out


class BasicBlock(nn.Module):      # 左侧的 residual block 结构(18-layer、34-layer)
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):      # 两层卷积 Conv2d + Shutcuts
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.SE = SE_Block(planes)           # Squeeze-and-Excitation block

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Block
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        SE_out = self.SE(out)
        out = out * SE_out
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class Bottleneck(nn.Module):      # 右侧的 residual block 结构(50-layer、101-layer、152-layer)
    expansion = 4

    def __init__(self, in_planes, planes, stride=1):      # 三层卷积 Conv2d + Shutcuts
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
                               stride=stride, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, self.expansion*planes,
                               kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(self.expansion*planes)

        self.SE = SE_Block(self.expansion*planes)           # Squeeze-and-Excitation block

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:      # Shutcuts用于构建 Conv Block 和 Identity Block
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes,
                          kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
        out = F.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))
        SE_out = self.SE(out)
        out = out * SE_out
        out += self.shortcut(x)
        out = F.relu(out)
        return out


class SE_ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=1000):
        super(SE_ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3,
                               stride=1, padding=1, bias=False)                  # conv1
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)       # conv2_x
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)      # conv3_x
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)      # conv4_x
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)      # conv5_x
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.linear = nn.Linear(512 * block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)
        x = self.avgpool(x)
        x = torch.flatten(x, 1)
        out = self.linear(x)
        return out


def SE_ResNet18():
    return SE_ResNet(BasicBlock, [2, 2, 2, 2])


def SE_ResNet34():
    return SE_ResNet(BasicBlock, [3, 4, 6, 3])


def SE_ResNet50():
    return SE_ResNet(Bottleneck, [3, 4, 6, 3])


def SE_ResNet101():
    return SE_ResNet(Bottleneck, [3, 4, 23, 3])


def SE_ResNet152():
    return SE_ResNet(Bottleneck, [3, 8, 36, 3])


def test():
    net = SE_ResNet50()
    y = net(torch.randn(1, 3, 224, 224))
    print(y.size())
    summary(net, (1, 3, 224, 224))


if __name__ == '__main__':
    test()

输出结果:文章来源地址https://www.toymoban.com/news/detail-807521.html

torch.Size([1, 1000])
===============================================================================================
Layer (type:depth-idx)                        Output Shape              Param #
===============================================================================================
SE_ResNet                                     --                        --
├─Conv2d: 1-1                                 [1, 64, 224, 224]         1,728
├─BatchNorm2d: 1-2                            [1, 64, 224, 224]         128
├─Sequential: 1-3                             [1, 256, 224, 224]        --
│    └─Bottleneck: 2-1                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-1                       [1, 64, 224, 224]         4,096
│    │    └─BatchNorm2d: 3-2                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-3                       [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-4                  [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-5                       [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-6                  [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-7                     [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-8                   [1, 256, 224, 224]        16,896
│    └─Bottleneck: 2-2                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-9                       [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-10                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-11                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-12                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-13                      [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-14                 [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-15                    [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-16                  [1, 256, 224, 224]        --
│    └─Bottleneck: 2-3                        [1, 256, 224, 224]        --
│    │    └─Conv2d: 3-17                      [1, 64, 224, 224]         16,384
│    │    └─BatchNorm2d: 3-18                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-19                      [1, 64, 224, 224]         36,864
│    │    └─BatchNorm2d: 3-20                 [1, 64, 224, 224]         128
│    │    └─Conv2d: 3-21                      [1, 256, 224, 224]        16,384
│    │    └─BatchNorm2d: 3-22                 [1, 256, 224, 224]        512
│    │    └─SE_Block: 3-23                    [1, 256, 1, 1]            8,464
│    │    └─Sequential: 3-24                  [1, 256, 224, 224]        --
├─Sequential: 1-4                             [1, 512, 112, 112]        --
│    └─Bottleneck: 2-4                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-25                      [1, 128, 224, 224]        32,768
│    │    └─BatchNorm2d: 3-26                 [1, 128, 224, 224]        256
│    │    └─Conv2d: 3-27                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-28                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-29                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-30                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-31                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-32                  [1, 512, 112, 112]        132,096
│    └─Bottleneck: 2-5                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-33                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-34                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-35                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-36                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-37                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-38                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-39                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-40                  [1, 512, 112, 112]        --
│    └─Bottleneck: 2-6                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-41                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-42                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-43                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-44                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-45                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-46                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-47                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-48                  [1, 512, 112, 112]        --
│    └─Bottleneck: 2-7                        [1, 512, 112, 112]        --
│    │    └─Conv2d: 3-49                      [1, 128, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-50                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-51                      [1, 128, 112, 112]        147,456
│    │    └─BatchNorm2d: 3-52                 [1, 128, 112, 112]        256
│    │    └─Conv2d: 3-53                      [1, 512, 112, 112]        65,536
│    │    └─BatchNorm2d: 3-54                 [1, 512, 112, 112]        1,024
│    │    └─SE_Block: 3-55                    [1, 512, 1, 1]            33,312
│    │    └─Sequential: 3-56                  [1, 512, 112, 112]        --
├─Sequential: 1-5                             [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-8                        [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-57                      [1, 256, 112, 112]        131,072
│    │    └─BatchNorm2d: 3-58                 [1, 256, 112, 112]        512
│    │    └─Conv2d: 3-59                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-60                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-61                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-62                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-63                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-64                  [1, 1024, 56, 56]         526,336
│    └─Bottleneck: 2-9                        [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-65                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-66                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-67                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-68                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-69                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-70                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-71                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-72                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-10                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-73                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-74                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-75                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-76                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-77                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-78                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-79                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-80                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-11                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-81                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-82                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-83                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-84                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-85                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-86                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-87                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-88                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-12                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-89                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-90                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-91                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-92                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-93                      [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-94                 [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-95                    [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-96                  [1, 1024, 56, 56]         --
│    └─Bottleneck: 2-13                       [1, 1024, 56, 56]         --
│    │    └─Conv2d: 3-97                      [1, 256, 56, 56]          262,144
│    │    └─BatchNorm2d: 3-98                 [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-99                      [1, 256, 56, 56]          589,824
│    │    └─BatchNorm2d: 3-100                [1, 256, 56, 56]          512
│    │    └─Conv2d: 3-101                     [1, 1024, 56, 56]         262,144
│    │    └─BatchNorm2d: 3-102                [1, 1024, 56, 56]         2,048
│    │    └─SE_Block: 3-103                   [1, 1024, 1, 1]           132,160
│    │    └─Sequential: 3-104                 [1, 1024, 56, 56]         --
├─Sequential: 1-6                             [1, 2048, 28, 28]         --
│    └─Bottleneck: 2-14                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-105                     [1, 512, 56, 56]          524,288
│    │    └─BatchNorm2d: 3-106                [1, 512, 56, 56]          1,024
│    │    └─Conv2d: 3-107                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-108                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-109                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-110                [1, 2048, 28, 28]         4,096
│    │    └─SE_Block: 3-111                   [1, 2048, 1, 1]           526,464
│    │    └─Sequential: 3-112                 [1, 2048, 28, 28]         2,101,248
│    └─Bottleneck: 2-15                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-113                     [1, 512, 28, 28]          1,048,576
│    │    └─BatchNorm2d: 3-114                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-115                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-116                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-117                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-118                [1, 2048, 28, 28]         4,096
│    │    └─SE_Block: 3-119                   [1, 2048, 1, 1]           526,464
│    │    └─Sequential: 3-120                 [1, 2048, 28, 28]         --
│    └─Bottleneck: 2-16                       [1, 2048, 28, 28]         --
│    │    └─Conv2d: 3-121                     [1, 512, 28, 28]          1,048,576
│    │    └─BatchNorm2d: 3-122                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-123                     [1, 512, 28, 28]          2,359,296
│    │    └─BatchNorm2d: 3-124                [1, 512, 28, 28]          1,024
│    │    └─Conv2d: 3-125                     [1, 2048, 28, 28]         1,048,576
│    │    └─BatchNorm2d: 3-126                [1, 2048, 28, 28]         4,096
│    │    └─SE_Block: 3-127                   [1, 2048, 1, 1]           526,464
│    │    └─Sequential: 3-128                 [1, 2048, 28, 28]         --
├─AdaptiveAvgPool2d: 1-7                      [1, 2048, 1, 1]           --
├─Linear: 1-8                                 [1, 1000]                 2,049,000
===============================================================================================
Total params: 28,080,344
Trainable params: 28,080,344
Non-trainable params: 0
Total mult-adds (G): 63.60
===============================================================================================
Input size (MB): 0.60
Forward/backward pass size (MB): 2691.18
Params size (MB): 112.32
Estimated Total Size (MB): 2804.10
===============================================================================================


到了这里,关于[ 注意力机制 ] 经典网络模型1——SENet 详解与复现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • SE、CBAM、ECA注意力机制(网络结构详解+详细注释代码+核心思想讲解+注意力机制优化神经网络方法)——pytorch实现

           这期博客我们来学习一下神秘已久的注意力机制,刚开始接触注意力机制的时候,感觉很有意思,事实上学会之后会发现比想象中的要简单,复杂的注意力机制后续会讲解,这期博客先讲解最常见的三种SE、CBAM、ECA注意力机制。        注意力机制更详细的可以被称

    2024年02月07日
    浏览(49)
  • 【动画详解人工智能原理】Tranformer 模型中的注意力机制的工作过程是怎样的 ?一个带有注意力的 Seq2seq 模型的机制实例视频动画详细讲解

    Seq2seq 序列到序列模型是深度学习模型,在机器翻译、文本摘要和图像字幕等任务中取得了很多成功。谷歌翻译于 2016 年底开始在生产中使用此类模型。两篇开创性论文(Sutskever 等人,2014 年,Cho 等人,2014 年)对这

    2024年02月07日
    浏览(52)
  • U-Net网络模型改进(添加通道与空间注意力机制)---亲测有效,指标提升

    U-Net网络模型(注意力改进版本) 这一段时间做项目用到了U-Net网络模型,但是原始的U-Net网络还有很大的改良空间,在卷积下采样的过程中加入了通道注意力和空间注意力 。 常规的U-net模型如下图: 红色箭头为可以添加的地方:即下采样之间。 通道空间注意力是一个即插即

    2024年03月15日
    浏览(46)
  • 注意力机制详解系列(一):注意力机制概述

    👨‍💻 作者简介: 大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享。 公众号: GoAI的学习小屋,免费分享书籍、简历、导图等资料,更有交流群分享AI和大数据,加群方式公众号回复“加群”或➡️点击链接。 🎉 专栏推

    2024年01月25日
    浏览(46)
  • 注意力机制详解系列(三):空间注意力机制

    👨‍💻 作者简介: 大数据专业硕士在读,CSDN人工智能领域博客专家,阿里云专家博主,专注大数据与人工智能知识分享。 🎉 专栏推荐: 目前在写CV方向专栏,更新不限于目标检测、OCR、图像分类、图像分割等方向,目前活动仅19.9,虽然付费但会长期更新,感兴趣的小伙

    2024年02月02日
    浏览(45)
  • 神经网络学习小记录73——Pytorch CA(Coordinate attention)注意力机制的解析与代码详解

    CA注意力机制是最近提出的一种注意力机制,全面关注特征层的空间信息和通道信息。 Github源码下载地址为: https://github.com/bubbliiiing/yolov4-tiny-pytorch 复制该路径到地址栏跳转。 该文章的作者认为现有的注意力机制(如CBAM、SE)在求取通道注意力的时候,通道的处理一般是采

    2024年02月06日
    浏览(46)
  • 大模型基础之注意力机制和Transformer

    核心思想:在decoder的每一步,把encoder端所有的向量提供给decoder,这样decoder根据当前自身状态,来自动选择需要使用的向量和信息. decoder在每次生成时可以关注到encoder端所有位置的信息。 通过注意力地图可以发现decoder所关注的点。 注意力使网络可以对齐语义相关的词汇。

    2024年02月11日
    浏览(43)
  • 多维时序 | Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型

    预测效果 基本介绍 1.Matlab实现LSTM-Mutilhead-Attention长短期记忆神经网络融合多头注意力机制多变量时间序列预测模型(完整源码和数据) 2.运行环境Matlab2023及以上,excel数据集,多列输入,单列输出,方便替换数据,考虑历史特征的影响; 3.多指标评价,评价指标包括:R2、MA

    2024年02月20日
    浏览(80)
  • 注意力机制——ECANet及Mobilenetv2模型应用

    一、介绍 ECANet(CVPR 2020)作为一种轻量级的注意力机制,其实也是通道注意力机制的一种实现形式。其论文和开源代码为: 论文地址:https://arxiv.org/abs/1910.03151 代码:https://github.com/BangguWu/ECANet ECA模块,去除了原来SE模块中的全连接层,直接在全局平均池化之后的特征上通过

    2024年02月16日
    浏览(48)
  • 神经网络多种注意力机制原理和代码讲解

    多种注意力表格: 大神参考仓库链接: 魔鬼面具 对应 name 就是目录,点击即可跳转到对应学习。 name need_chaneel paper SE (2017) True https://arxiv.org/abs/1709.01507 BAM (2018) True https://arxiv.org/pdf/1807.06514.pdf CBAM (2018) True https://openaccess.thecvf.com/content_ECCV_2018/papers/Sanghyun_Woo_Convolutional_Block_

    2024年02月06日
    浏览(83)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包