主动轮廓——计算机视觉中的图像分割方法

这篇具有很好参考价值的文章主要介绍了主动轮廓——计算机视觉中的图像分割方法。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

文章来源地址https://www.toymoban.com/news/detail-807608.html

一、说明

   简单来说,计算机视觉就是为计算机提供类似人类的视觉。作为人类,我们很容易识别任何物体。我们可以很容易地识别山丘、树木、土地、动物等,但计算机没有眼睛,也没有大脑,因此它很难识别任何图像。计算机只能理解命令和数学。因此,有很多技术可以让计算机识别各种物体。图像分割是目标检测的方法之一。

二、什么是图像分割?

   图像分割是指通过对图像的像素值进行聚类来划分输入图像。它主要用于从图像中识别各种表面或生物或非生物物体。例如,如果您有以下图像作为输入,那么您可以将老虎、绿草、蓝色的水和陆地作为输出图像中的各种表面。

图片: 主动轮廓——计算机视觉中的图像分割方法,人工智能,深度学习和计算机视觉,计算机视觉,人工智能

   有各种图像分割技术,例如活动轮廓、分割和合并、分水岭、区域分割、区域合并、基于图的分割、均值平移和模型查找以及归一化剪切。

   本文介绍了一种最有用的图像分割技术,称为“主动轮廓”。

2.1 什么是主动轮廓?

   主动轮廓是一种分割方法,它使用能量力和约束将感兴趣的像素从图片中分离出来,以进行进一步的处理和分析。

   活动轮廓被定义为分割过程的活动模型。轮廓是定义图像中感兴趣区域的边界。轮廓是已插值的点的集合。插值过程可能是线性、样条或多项式,具体取决于图像中曲线的描述方式。

2.2 为什么需要主动轮廓?

   活动轮廓在图像处理中的主要用途是定义图像中的平滑形状并构建区域的闭合轮廓。主要用于识别图像中不均匀的形状。

   活动轮廓用于各种医学图像分割应用。各种形式的活动轮廓模型被用于各种医学应用中,特别是用于从各种医学图像中分离所需区域。例如,使用主动轮廓模型检查大脑 CT 扫描的切片以进行分割。

2.3 主动轮廓如何工作?

   活动轮廓是一种在图像中获取具有分割约束和力的可变形模型或结构的技术。轮廓模型定义对象边界或其他图片特征以生成参数曲线或轮廓。

   模型的曲率是使用多种利用外力和内力的轮廓技术来确定的。能量函数总是与图像的曲线相关。外部能量被描述为由专门用于控制轮廓在图像上的位置的图片引起的力和用于控制变形变化的内部能量的总和。

   对某一图像的轮廓分割约束是根据需要确定的。通过定义能量函数可以获得所需的形状。定位轮廓的点的集合用于描述轮廓变形。该形状对应于所需的图像轮廓,其是通过最小化能量函数来定义的。

三、主动轮廓分割模型

3.1.蛇模型

   蛇模型是一种能够解决广泛的分割问题的技术。该模型的主要功能是识别和勾勒出目标对象以进行分割。它需要对目标物体的形状有一些先验知识,尤其是对于复杂的物体。主动蛇模型(通常称为蛇)通常通过使用专注于最小化能量的样条线进行配置,然后使用控制图像的各种力。

3.2 方程

   简单的蛇模型可以由一组n个点 v i表示, i=0,….n-1, 内部弹性能量项 E Internal 和基于外部边缘的能量项 E external。 内部能量项的目的是调节蛇的变形,而外部能量项的功能是控制轮廓与图像的拟合。外部能量通常是由图片E image引起的力和由用户E con施加的约束力的组合。

   蛇的能量函数是其外部能量和内部能量的总和,可以写成如下:
主动轮廓——计算机视觉中的图像分割方法,人工智能,深度学习和计算机视觉,计算机视觉,人工智能

3.3 优势

   主动蛇模型的应用正在迅速扩展,特别是在许多成像领域。在医学成像领域,蛇模型用于分割图像中与图片的其他区域相比具有独特特征的部分。医学成像中的传统蛇模型应用包括用于识别青光眼的视盘和视杯分割、细胞图像分割、血管区域分割以及用于诊断和研究疾病或异常的其他几个区域分割。

3.4 坏处

   传统的主动蛇模型方法存在各种低效问题,例如高复杂性对象中的噪声敏感性和错误的轮廓检测,这些问题在先进的轮廓方法中得到了解决。

四、.梯度矢量流模型

   梯度矢量流模型是蛇形或活动轮廓模型的更发达且定义明确的版本。传统的蛇模型有两个局限性:凹边界的轮廓收敛不充分以及蛇曲线流在距离最小值很远的地方开始。作为扩展,梯度矢量流模型利用梯度矢量流场作为能量约束来确定等高线流。

4.1 方程

   在 2D 中,GVF 矢量场 F G V F F_{GVF} FGVF最小化能量泛函
主动轮廓——计算机视觉中的图像分割方法,人工智能,深度学习和计算机视觉,计算机视觉,人工智能

其中“μ”是可控平滑项。

4.2 优势

   梯度矢量流模型是蛇模型的高级版本,用于各种图像处理应用,特别是医学图像处理。医学成像中具有特定参数的区域的分割是在主动轮廓模型的帮助下完成的。由于这些模型在目标对象周围创建轮廓,因此它与图像分离。

4.3 坏处

   利用 GVF 的主要困难是平滑项“μ”导致轮廓的边缘变圆。减小“μ”的值可最大限度地减少舍入,但会增加平滑量。

五、气球模型

   蛇模型不会被吸引到远处的边缘。如果没有显着的图像力应用于蛇模型,其内侧将会收缩。大于最小值轮廓的蛇最终会收缩到其中,而小于最小值轮廓的蛇将不会发现最小值,而是会继续收缩。为了解决蛇模型的约束,开发了气球模型,其中将膨胀因子纳入作用在蛇上的力中。通货膨胀的力量可以压倒来自弱边缘的力量,加剧第一猜测本地化的问题。

5.1 方程

   气球模型中引入了作用在蛇上的力的膨胀项。
主动轮廓——计算机视觉中的图像分割方法,人工智能,深度学习和计算机视觉,计算机视觉,人工智能

   其中 n(s) 是 v(s) 处曲线的法向酉向量,k 1是力的大小。

5.2 优势

   气球概念用于分割各种医学图片。该应用程序的主要目的是提出一种用于分割 2D 图像和重建 3D 网格的新技术,以确保网格的无懈可击。

5.3 坏处

   气球模型的最大问题是处理速度慢,这使得管理锐利边缘变得困难,并且需要仔细放置对象。气球模型常用于分析图片轮廓提取。

六、几何或测地线活动轮廓模型

   几何活动轮廓 (GAC) 是轮廓模型的一种形式,它通过垂直移动曲线的点来调整欧几里得平面中建立的平滑曲线。这些点以与图像区域的曲率成比例的速率移动。曲线的几何流动和图像中物品的识别被用来表征轮廓。几何流包括感兴趣区域的内部和外部几何测量。在检测图像中的项目的过程中,利用了蛇的几何替代。这些轮廓模型很大程度上依赖于指定图像的独特区域进行分割的水平集函数。

6.1 方程

   例如GAC的梯度下降曲线演化方程为
主动轮廓——计算机视觉中的图像分割方法,人工智能,深度学习和计算机视觉,计算机视觉,人工智能

   其中 g(I) 是停止函数,c是拉格朗日乘子,K 是曲率,矢量 N 是单位向内法线。这种特殊形式的曲线演化方程仅依赖于法线方向的速度。因此,通过将水平集函数 φ 插入其中,可以将其等效地重写为欧拉形式,如下所示

主动轮廓——计算机视觉中的图像分割方法,人工智能,深度学习和计算机视觉,计算机视觉,人工智能

6.2 优势

   几何活动轮廓主要用于医学图像计算,特别是基于图像的分割。在这种情况下,任何成像方式的图片都会被检查以进行分割,以便研究、处理和分析感兴趣的区域。这些区域包括在人体内部区域或器官中形成的任何畸变,例如血栓、创伤、病变、细胞异常、代谢中断、生物分子破坏等。

6.3 坏处

   大多数情况下,它没有这样的低效率,但它们很难实施,因为它们本质上很复杂。

七、使用活动轮廓实现蛇模型

Python代码:

import numpy as np
import matplotlib.pyplot as plt
from skimage.color import rgb2gray
from skimage import data
from skimage.filters import gaussian
from skimage.segmentation import active_contour
image = data.astronaut()
image = rgb2gray(image)
s = np.linspace(0, 2*np.pi, 400)
r = 100 + 100*np.sin(s)
c = 220 + 100*np.cos(s)
init = np.array([r, c]).T
snake = active_contour(gaussian(image, 3, preserve_range=False),
init, alpha=0.015, beta=10, gamma=0.001)
fig, ax = plt.subplots(figsize=(7, 7))
ax.imshow(image, cmap=plt.cm.gray)
ax.plot(init[:, 1], init[:, 0], '--r', lw=3)
ax.plot(snake[:, 1], snake[:, 0], '-b', lw=3)
ax.set_xticks([]), ax.set_yticks([])
ax.axis([0, image.shape[1], image.shape[0], 0])
plt.show()`

   实验结果显示:
主动轮廓——计算机视觉中的图像分割方法,人工智能,深度学习和计算机视觉,计算机视觉,人工智能

八、经常问的问题

8.1 Q1. 什么是主动轮廓分割?

   答:主动轮廓分割,也称为“蛇”或“snake”,是一种用于图像中对象边界检测的计算机视觉技术。它涉及在对象边界附近创建初始轮廓,并迭代调整其位置以准确地贴合对象的边缘。轮廓根据图像梯度、内部能量和外部约束产生的力而演变。主动轮廓分割在阈值处理或边缘检测等传统方法可能失败的情况下特别有用,因为它可以通过根据对象边缘自适应调整轮廓形状来处理复杂的对象形状和部分遮挡。

8.2 Q2。主动轮廓分割可以用来做什么?

   答. 主动轮廓分割可用于各种计算机视觉应用,例如医学图像分析(例如 MRI 扫描中的器官分割)、视频中的对象跟踪、图像编辑(例如用于照片处理的精确对象隔离)和工业自动化(例如,对制造品进行缺陷检测)。在需要精确描绘具有复杂形状和变化对比度的对象的边界的情况下,它表现出色。

到了这里,关于主动轮廓——计算机视觉中的图像分割方法的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【计算机视觉 | 图像分割】arxiv 计算机视觉关于图像分割的学术速递(8 月 30 日论文合集)

    Novis:端到端近在线视频实例分割实例 直到最近,视频实例分割(VIS)社区在以下共同信念下操作:离线方法通常优于逐帧在线处理。然而,最近在线方法的成功质疑这种信念,特别是对于具有挑战性和长视频序列。我们将这项工作理解为对最近观察结果的反驳,并呼吁社区

    2024年02月09日
    浏览(65)
  • 计算机视觉 -- 图像分割

    引入问题: 在自动驾驶系统中,如果用之前的检测网络(例如Faster-Rcnn),试想,倘若前方有一处急转弯,系统只在道路上给出一个矩形标识,这样一来车辆很有可能判断不出是该避让还是径直上前,车祸一触即发。因此,对新技术的诉求应运而生,该技术须能识别具体路况

    2024年02月11日
    浏览(55)
  • 计算机视觉实验五——图像分割

    了解图割操作,实现用户交互式分割,通过在一幅图像上为前景和背景提供一些标记或利用边界框选择一个包含前景的区域,实现分割。 采用聚类法实现图像的分割(K-means方法)。 ①图片准备 博主选择了一张 前景与背景区分明显 的图片,和一张 前景与背景区分不明显 的

    2024年04月15日
    浏览(45)
  • 【计算机视觉 | 目标检测 | 图像分割】arxiv 计算机视觉关于目标检测和图像分割的学术速递(7 月 17 日论文合集)

    Tall:用于深度假冒视频检测的缩略图布局 deepfake对社会和网络安全的威胁日益严重,引起了公众的极大关注,人们越来越多地致力于deepfake视频检测这一关键话题。现有的视频方法实现了良好的性能,但计算密集型。本文介绍了一种简单而有效的策略–缩略图布局(TALL),该

    2024年02月16日
    浏览(62)
  • 【计算机视觉 | 目标检测 | 图像分割】arxiv 计算机视觉关于目标检测和图像分割的学术速递(7 月 7 日论文合集)

    用于图像异常检测的上下文亲和度提取 以往的无监督工业异常检测工作主要集中在局部结构异常,如裂纹和颜色污染。虽然在这种异常上实现了显着的高检测性能,但它们面临着违反远程依赖性的逻辑异常,例如放置在错误位置的正常对象。在本文中,基于以前的知识蒸馏工

    2024年02月12日
    浏览(67)
  • 图像处理与计算机视觉--第五章-图像分割-自适应阈值分割

      在图片处理过程中,针对铺前进行二值化等操作的时候,我们希望能够将图片相应区域内所有的信息提供保留。实验室环境下,相应的素材是模板化的,但是将实验室方法应用于现实环境中时,我们会发现光影环境对于效果的影响其实是很大的。在这种情况下进行处理,

    2024年02月07日
    浏览(49)
  • 计算机视觉与深度学习-图像分割-视觉识别任务01-语义分割-【北邮鲁鹏】

    给每个像素分配类别标签。 不区分实例,只考虑像素类别。 滑动窗口缺点 重叠区域的特征反复被计算,效率很低。 所以针对该问题提出了新的解决方案–全卷积。 让整个网络只包含卷积层,一次性输出所有像素的类别预测。 全卷积优点 不用将图片分为一个个小区域然后再

    2024年02月07日
    浏览(73)
  • 计算机视觉与深度学习-图像分割-视觉识别任务03-实例分割-【北邮鲁鹏】

    论文题目:Mask R-CNN 论文链接:论文下载 论文代码:Facebook代码链接;Tensorflow版本代码链接; Keras and TensorFlow版本代码链接;MxNet版本代码链接 参考:Mask R-CNN详解 将图像中的每个像素与其所属的目标实例进行关联,并为每个像素分配一个特定的标签,以实现像素级别的目标

    2024年02月07日
    浏览(57)
  • 图像处理与计算机视觉--第五章-图像分割-Canny算子

    2.1.Canny算子简单介绍 Canny算子是一种非常常用的边缘检测算子,其效果图如下所示: 2.2.Canny算子边缘检测指标 Canny算子是基于边缘检测来实现的,那么边缘检测的指标如下所示: (1)好的信噪比,即将非边缘点判定为边缘点的概率要低。 (2)高定位,检测出的边缘要在实际边缘中

    2024年02月07日
    浏览(51)
  • 计算机视觉:聚类算法(K-Means)实现图像分割

    什么是K-means聚类? K-means聚类是一种无监督学习算法,用于将一组数据划分为K个不同的类别或簇。它基于数据点之间的相似性度量,将数据点分配到最接近的聚类中心。K-means算法的目标是最小化数据点与其所属聚类中心之间的平方距离和。 K-means聚类在图像分割中的应用 在

    2024年02月02日
    浏览(35)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包