时长比较短的音频:https://huggingface.co/datasets/PolyAI/minds14/viewer/en-US
时长比较长的音频:https://huggingface.co/datasets/librispeech_asr?row=8
此次测试过程暂时只使用比较短的音频
使用fast_whisper测试
下载安装,参考官方网站即可
报错提示:
Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory
Please make sure libcudnn_ops_infer.so.8 is in your library path!
解决办法:
找到有libcudnn_ops_infer.so.8 的路径,在我的电脑中,改文件所在的路径为
在终端导入 export LD_LIBRARY_PATH=/opt/audio/venv/lib/python3.10/site-packages/nvidia/cudnn/lib:$LD_LIBRARY_PATH
test_fast_whisper.py
import subprocess
import os
import time
import unittest
import openpyxl
from pydub import AudioSegment
from datasets import load_dataset
from faster_whisper import WhisperModel
class TestFastWhisper(unittest.TestCase):
def setUp(self):
pass
def test_fastwhisper(self):
# 替换为您的脚本路径
# 设置HTTP代理
os.environ["http_proxy"] = "http://10.10.10.178:7890"
os.environ["HTTP_PROXY"] = "http://10.10.10.178:7890"
# 不知道此处为什么不能生效,必须要在终端中手动导入
os.environ["LD_LIBRARY_PATH"] = "/opt/audio/venv/lib/python3.10/site-packages/nvidia/cudnn/lib:$LD_LIBRARY_PATH"
# 设置HTTPS代理
os.environ["https_proxy"] = "http://10.10.10.178:7890"
os.environ["HTTPS_PROXY"] = "http://10.10.10.178:7890"
print("load whisper")
# 使用fast_whisper
model_size = "large-v2"
# Run on GPU with FP16
fast_whisper_model = WhisperModel(model_size, device="cuda", compute_type="float16")
minds_14 = load_dataset("PolyAI/minds14", "en-US", split="train") # for en-US
workbook = openpyxl.Workbook()
# 创建一个工作表
worksheet = workbook.active
# 设置表头
worksheet["A1"] = "Audio Path"
worksheet["B1"] = "Audio Duration (seconds)"
worksheet["C1"] = "Audio Size (MB)"
worksheet["D1"] = "Correct Text"
worksheet["E1"] = "Transcribed Text"
worksheet["F1"] = "Cost Time (seconds)"
for index, each in enumerate(minds_14, start=2):
audioPath = each["path"]
print(audioPath)
# audioArray = each["audio"]
audioDuration = len(AudioSegment.from_file(audioPath))/1000
audioSize = os.path.getsize(audioPath)/ (1024 * 1024)
CorrectText = each["transcription"]
tran_start_time = time.time()
segments, info = fast_whisper_model.transcribe(audioPath, beam_size=5)
segments = list(segments) # The transcription will actually run here.
print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
text = ""
for segment in segments:
text += segment.text
cost_time = time.time() - tran_start_time
print("Audio Path:", audioPath)
print("Audio Duration (seconds):", audioDuration)
print("Audio Size (MB):", audioSize)
print("Correct Text:", CorrectText)
print("Transcription Time (seconds):", cost_time)
print("Transcribed Text:", text)
worksheet[f"A{index}"] = audioPath
worksheet[f"B{index}"] = audioDuration
worksheet[f"C{index}"] = audioSize
worksheet[f"D{index}"] = CorrectText
worksheet[f"E{index}"] = text
worksheet[f"F{index}"] = cost_time
# break
workbook.save("fast_whisper_output_data.xlsx")
print("数据已保存到 fast_whisper_output_data.xlsx 文件")
if __name__ == '__main__':
unittest.main()
使用whisper测试
下载安装,参考官方网站即可,代码与上面代码类似
测试结果可视化
不太熟悉用numbers,凑合着看一下就行
文章来源:https://www.toymoban.com/news/detail-807640.html
很明显,fast_whisper速度要更快一些文章来源地址https://www.toymoban.com/news/detail-807640.html
到了这里,关于从Hugging Face下载数据测试whisper、fast_whisper耗时的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!