目标检测难题 | 小目标检测策略汇总

这篇具有很好参考价值的文章主要介绍了目标检测难题 | 小目标检测策略汇总。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

大家好,在计算机视觉中,检测小目标是最有挑战的问题之一,本文给出了一些有效的策略。

目标检测难题 | 小目标检测策略汇总,机器学习系列,目标检测,目标跟踪,计算机视觉

从无人机上看到的小目标

为了提高模型在小目标上的性能,本文推荐以下技术:

  • 提高图像采集的分辨率

  • 增加模型的输入分辨率

  • tile你的图像

  • 通过增强生成更多数据

  • 自动学习模型anchors

  • 过滤掉无关的类别文章来源地址https://www.toymoban.com/news/detail-808130.html

小目标问题困扰着世界各地的目标检测模型。查一下最近的模型在COCO上的评估结果,YOLOv3,EfficientDet和YOLOv4:

目标检测难题 | 小目标检测策略汇总,机器学习系列,目标检测,目标跟踪,计算机视觉

查看AP_S、AP_M、AP_L以了解最新的模型

以Efficient为例,小目标的AP只有12%,大目标的AP为51%。这几乎是五倍的差异,检测小物体如此困难要归结于模型,目标检测模型通过在卷积层中对像素进行聚合来形成特征。

目标检测难题 | 小目标检测策略汇总,机器学习系列,目标检测,目标跟踪,计算机视觉

物体检测中的特征聚合

在网络的末端,基于损失函数进行预测,损失函数根据预测值和ground truth之间的差异对所有像素进行加和。

目标检测难题 | 小目标检测策略汇总,机器学习系列,目标检测,目标跟踪,计算机视觉

YOLO中的损失函数

如果ground truth框不大,则在进行训练时信号会很小。此外,小物体最有可能有数据标记错误,他们的识别可能被忽略,从经验和理论上讲小物体是很难的。

提升图像采集的分辨率

这其实都是分辨率的问题。

非常小的物体的边界框中可能只包含几个像素,这意味着增加图像的分辨率可以增加探测器可以从那个小盒子中形成的丰富特征,这是非常重要的。

因此,我们建议尽可能提高采集图像的分辨率。

提高模型的输入分辨率

一旦有了更高分辨率的图像,就可以放大模型的输入分辨率。警告:这将导致大型模型需要更长的时间来训练,并且开始部署时,也会更慢地进行推断,可能需要实验来找出速度与性能之间的正确权衡。

在训练YOLOv4中,可以通过改变配置文件中的图像大小来轻松缩放输入分辨率。

[net] 
batch=64 
subdivisions=36 
width={YOUR RESOLUTION WIDTH HERE} 
height={YOUR RESOLUTION HEIGHT HERE} 
channels=3 
momentum=0.949 
decay=0.0005 
angle=0 
saturation = 1.5 
exposure = 1.5 
hue = .1  
learning_rate=0.001 
burn_in=1000 
max_batches=6000 
policy=steps 
steps=4800.0,5400.0 
scales=.1,.1

同时也可以在训练YOLOv5中通过改变训练命令中的图像尺寸参数来轻松缩放输入分辨率:

!python train.py --img {YOUR RESOLUTON SIZE HERE} --batch 16 --epochs 10 --data '../data.yaml' --cfg ./models/custom_yolov5s.yaml --weights '' --name yolov5s_results  --cache

对图像进行Tiling

检测小物体的另一个重要策略是将图像切割后形成batch,这个操作叫做tile,作为预处理步骤。tile可以有效地将检测器聚焦在小物体上,但允许保持所需的小输入分辨率,以便能够运行快速推断。

目标检测难题 | 小目标检测策略汇总,机器学习系列,目标检测,目标跟踪,计算机视觉

tile图像作为预处理步骤

如果在训练中使用tile,重要的是要记住,也需要在推理时tile你的图像。

通过增强生成更多数据

数据增强从基本数据集生成新的图像,这对于防止模型过拟合训练集非常有用。

一些特别有用的小物体检测增强包括随机裁剪、随机旋转和马赛克增强。

自动学习模型Anchors

Anchors是模型学会预测的与之相关的原型边界框。也就是说,anchors可以预先设置,有时对你的训练数据不是最优的。最好根据手头的任务自定义调优它们,YOLOv5模型会根据自定义数据自动为你完成这项工作,所需要做的就是开始训练。

Analyzing anchors... anchors/target = 4.66, Best Possible Recall (BPR) = 0.9675. Attempting to generate improved anchors, please wait... WARNING: Extremely small objects found. 35 of 1664 labels are < 3 pixels in width or height. Running kmeans for 9 anchors on 1664 points... thr=0.25: 0.9477 best possible recall, 4.95 anchors past thr n=9, img_size=416, metric_all=0.317/0.665-mean/best, past_thr=0.465-mean: 18,24,  65,37,  35,68,  46,135,  152,54,  99,109,  66,218,  220,128,  169,228 Evolving anchors with Genetic Algorithm: fitness = 0.6825: 100%|██████████| 1000/1000 [00:00<00:00, 1081.71it/s] thr=0.25: 0.9627 best possible recall, 5.32 anchors past thr n=9, img_size=416, metric_all=0.338/0.688-mean/best, past_thr=0.476-mean: 13,20,  41,32,  26,55,  46,72,  122,57,  86,102,  58,152,  161,120,  165,204

过滤掉无关的类别

类别管理是提高数据集质量的一项重要技术。如果有一个类与另一个类明显重叠,应该从数据集中过滤掉这个类。也许在处理中,认为数据集中的小物体不值得检测,可能希望将其拿掉。

综上所述,正确地检测小物体确实是一项挑战。本文讨论了一些策略来改善小物体探测器,即:

  • 提高图像采集的分辨率

  • 增加模型的输入分辨率

  • tile你的图像

  • 通过增强生成更多数据

  • 自动学习模型anchors

  • 过滤掉无关的类别

到了这里,关于目标检测难题 | 小目标检测策略汇总的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)

    第1章:视觉项目资料介绍与学习指南 相关知识: 介绍计算机视觉、OpenCV库,以及课程的整体结构。 学习概要: 了解课程的目标和学习路径,为后续章节做好准备。 重要性: 提供学生对整个课程的整体认识,为学习提供框架和背景。 包括了 计算机视觉/opencv视频 视频对应

    2024年02月05日
    浏览(59)
  • 目标检测与跟踪 (1)- 机器人视觉与YOLO V8

    目录 1、研究背景 2. 算法原理及对比  2.1 点对特征(Point Pairs)  2.2 模板匹配  2.3 霍夫森林  2.4 深度学习  3、YOLO家族模型演变 4、YOLO V8         机器人视觉识别技术 是移动机器人平台十分关键的技术,代表着 机器人智能化、自动化及先进性的条件判定标准 。  如何在

    2024年02月14日
    浏览(48)
  • 竞赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习得交通车辆流量分析 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/da

    2024年02月07日
    浏览(49)
  • python毕业设计 深度学习交通车辆目标检测与跟踪系统 - opencv

    🔥 这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。 为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天

    2024年02月05日
    浏览(51)
  • 竞赛选题 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv

    🔥 优质竞赛项目系列,今天要分享的是 🚩 **基于深度学习得交通车辆流量分析 ** 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:5分 🧿 更多资料, 项目分享: https://gitee.com/da

    2024年02月06日
    浏览(59)
  • 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】机器视觉(基础篇)(十七)

    目录 几个高频面试题目 如何选择合适的面扫相机 算法原理 分辨率与视野 像素尺寸与景深 像素尺寸

    2024年02月19日
    浏览(56)
  • 最新目标跟踪评估指标汇总

    前段时间接触了一些目标跟踪的场景,本文主要汇总目标跟踪的常用评估指标,主要包括下面几类: 容易理解的概念:FP、FN、TP、id switch、ML、MT 更加综合的概念:MOTA、IDF1、MOTP、HOTA 主要的介绍集中在HOTA ,因为这个评估指标比较新,我能看到的讲解都比较少一点,所以展开

    2024年02月04日
    浏览(38)
  • 竞赛选题 机器视觉目标检测 - opencv 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习目标检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年02月07日
    浏览(51)
  • 挑战杯 机器视觉目标检测 - opencv 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习目标检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年04月13日
    浏览(60)
  • 计算机竞赛 机器视觉目标检测 - opencv 深度学习

    🔥 优质竞赛项目系列,今天要分享的是 🚩 机器视觉 opencv 深度学习目标检测 该项目较为新颖,适合作为竞赛课题方向,学长非常推荐! 🥇学长这里给一个题目综合评分(每项满分5分) 难度系数:3分 工作量:3分 创新点:4分 🧿 更多资料, 项目分享: https://gitee.com/dancheng

    2024年02月07日
    浏览(70)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包