算法练习Day30 (Leetcode/Python-动态规划)

这篇具有很好参考价值的文章主要介绍了算法练习Day30 (Leetcode/Python-动态规划)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

62. Unique Paths

There is a robot on an m x n grid. The robot is initially located at the top-left corner (i.e., grid[0][0]). The robot tries to move to the bottom-right corner (i.e., grid[m - 1][n - 1]). The robot can only move either down or right at any point in time.

Given the two integers m and n, return the number of possible unique paths that the robot can take to reach the bottom-right corner.

思路:以下分析摘自https://programmercarl.com/0062.%E4%B8%8D%E5%90%8C%E8%B7%AF%E5%BE%84.html#%E6%80%9D%E8%B7%AF

算法练习Day30 (Leetcode/Python-动态规划),leetcode,动态规划,算法

树的深度是m+n+1,二叉树的节点个数是2^(m+n+1),DFS需要遍历整个二叉树,算法复杂度就是O(2^(m + n - 1) - 1),这是指数级别的复杂度。

机器人从(0 , 0) 位置出发,到(m - 1, n - 1)终点。

按照动规五部曲来分析:

1. 确定dp数组(dp table)以及下标的含义

dp[i][j] :表示从(0 ,0)出发,到(i, j) 有dp[i][j]条不同的路径。

2. 确定递推公式

想要求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。

此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。

那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。

3. dp数组的初始化

如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。

4. 确定遍历顺序

这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。

这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。

5. 举例推导dp数组

数论方法:

可以看出一共m,n的话,无论怎么走,走到终点都需要 m + n - 2 步。

在这m + n - 2 步中,一定有 m - 1 步是要向下走的,不用管什么时候向下走。

那么有几种走法呢? 可以转化为,给你m + n - 2个不同的数,随便取m - 1个数,有几种取法。

那么这就是一个组合问题了。

所以以下就是可走的path的个数:算法练习Day30 (Leetcode/Python-动态规划),leetcode,动态规划,算法

递归法:

def Solution():
    def uniquePaths(self, m, n):
        if m == 1 or n == 1:
            return 1
        return self.uniquePaths(m - 1, n) + self.uniquePaths(m, n-1)

动态规划法:

class Solution(object):
    def uniquePaths(self, m, n):
        dp = [[0] * n] * m
        for i in range(m):
            dp[i][0] = 1
        for j in range(n):
            dp[0][j] = 1
        for i in range(1,m):
            for j in range(1,n):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[m-1][n-1]

注意!之前习惯了numpy,总是直接dp[:,0] = 1,这样在list里是不对的。

63. Unique Paths II

如果有障碍物的话,之后的路就不通了,在设置初始状态和更新状态的时候都要对应改动。

具体分析见此链接代码随想录文章来源地址https://www.toymoban.com/news/detail-808194.html

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        if (obstacleGrid[0][0] == 1)
            return 0;
        vector<int> dp(obstacleGrid[0].size());
        for (int j = 0; j < dp.size(); ++j)
            if (obstacleGrid[0][j] == 1)
                dp[j] = 0;
            else if (j == 0)
                dp[j] = 1;
            else
                dp[j] = dp[j-1];

        for (int i = 1; i < obstacleGrid.size(); ++i)
            for (int j = 0; j < dp.size(); ++j){
                if (obstacleGrid[i][j] == 1)
                    dp[j] = 0;
                else if (j != 0)
                    dp[j] = dp[j] + dp[j-1];
            }
        return dp.back();
    }
};

到了这里,关于算法练习Day30 (Leetcode/Python-动态规划)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 算法训练day41|动态规划 part03(LeetCode343. 整数拆分、96.不同的二叉搜索树)

    题目链接🔥🔥 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 说明: 你可以假设 n 不小于 2 且不大于

    2024年02月10日
    浏览(41)
  • 算法打卡day39|动态规划篇07| Leetcode 70. 爬楼梯(进阶版)、322. 零钱兑换、279.完全平方数

    Leetcode 70. 爬楼梯(进阶版) 题目: 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬至多m (1 = m n)个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数。 输入描述:输入共一行,包含两个正整数,分别表示n, m 输出描述:输出一个整数,

    2024年04月14日
    浏览(65)
  • LeetCode练习七:动态规划上:线性动态规划

    参考《OI Wiki动态规划》、《算法通关手册》动态规划篇 1.1 动态规划简介    动态规划(Dynamic Programming) :简称 DP ,是一种通过把原问题分解为相对简单的子问题的方式而求解复杂问题的方法。 动态规划方法与分治算法类似,却又不同于分治算法。 「动态规划的核心思想

    2024年02月12日
    浏览(69)
  • LeetCode练习八:动态规划下:背包问题

    参考: 【资料】算法通关手册、背包九讲 - 崔添翼 【文章】背包 DP - OI Wiki 【B站视频】代码随想录详解0-1背包    背包问题 :背包问题是线性 DP 问题中一类经典而又特殊的模型。背包问题可以描述为:给定一组物品,每种物品都有自己的重量、价格以及数量。再给定一个

    2024年01月16日
    浏览(58)
  • LeetCode刷题笔记【30】:动态规划专题-2(不同路径、不同路径 II)

    参考前文 参考文章: LeetCode刷题笔记【29】:动态规划专题-1(斐波那契数、爬楼梯、使用最小花费爬楼梯) LeetCode链接:https://leetcode.cn/problems/unique-paths/description/ 动态规划 : 创建m×n的数组, 对应这个地图, 数组 val 表示 有几种方法可以走到这一格 最开始, 第一行和第一列v

    2024年02月09日
    浏览(59)
  • 算法练习 Day38 | LeetCode509,70,746

    先导知识: 1、动态规划常见题型 动态规划基础问题 背包问题 打家劫舍 股票问题 子序列问题 2、动态规划五部曲 (1)确定dp数组的定义及下标的含义 (2)确定递推公式 (3)dp数组如何初始化 (4)遍历顺序 (5)打印dp数组 LeetCode509:509. 斐波那契数 题目描述: 斐波那契

    2024年02月21日
    浏览(40)
  • LeetCode算法题解(动态规划)|LeetCode343. 整数拆分、LeetCode96. 不同的二叉搜索树

    题目链接:343. 整数拆分 题目描述: 给定一个正整数  n  ,将其拆分为  k  个  正整数  的和(  k = 2  ),并使这些整数的乘积最大化。 返回  你可以获得的最大乘积  。 示例 1: 示例 2: 提示: 2 = n = 58 算法分析: 定义dp数组及下标含义: dp[i]表述正整数i拆分成k个正整数

    2024年02月04日
    浏览(42)
  • 【算法】动态规划 ⑦ ( LeetCode 55. 跳跃游戏 | 算法分析 | 代码示例 )

    LeetCode 55. 跳跃游戏 : https://leetcode.cn/problems/jump-game/ 给定一个 非负整数数组 nums ,你最初位于数组的 第一个下标 0 位置 。 数组中的每个元素 代表你在该位置可以 跳跃的最大长度。 判断你 是否能够到达最后一个下标。 给定一个一维数组 , 数组元素不能有负数 , 如 : {2, 2,

    2024年02月10日
    浏览(39)
  • LeetCode算法题解(动态规划)|LeetCoed62. 不同路径、LeetCode63. 不同路径 II

    题目链接:62. 不同路径 题目描述: 一个机器人位于一个  m x n   网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。 问总共有多少条不同的路径? 示例 1: 示例 2:

    2024年02月05日
    浏览(53)
  • 【算法|动态规划No.17】leetcode64. 最小路径和

    个人主页:兜里有颗棉花糖 欢迎 点赞👍 收藏✨ 留言✉ 加关注💓本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 🍔本专栏旨在提高自己算法能力的同时,记录一下自己的学习过程,希望对大家有所帮助 🍓希望我们一起努力、成长,共同进步。

    2024年02月07日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包