决策树、随机森林可视化

这篇具有很好参考价值的文章主要介绍了决策树、随机森林可视化。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

分享一个Python可视化工具pybaobabdt,轻松对决策树、随机森林可视化,例如,

决策树、随机森林可视化,随机森林,算法,机器学习

图怎么看:每一种颜色代表一个class,link的宽度表示从一个节点流向另一个节点的items数量。文章来源地址https://www.toymoban.com/news/detail-808548.html


安装

pip install pybaobabdt
pip install pygraphviz

可视化决策树

import pybaobabdt
import pandas as pd
from scipy.io import arff
from sklearn.tree import DecisionTreeClassifier #导入决策树算法

data = arff.loadarff('winequality-red.arff')
df = pd.DataFrame(data[0])

y = list(df['class'])
features = list(df.columns)
features.remove('class')
X = df.loc[:, features]

clf = DecisionTreeClassifier().fit(X, y)
ax = pybaobabdt.drawTree(clf, size=10, dpi=300, features=features) #可视化主函数pybaobabdt.drawTree

到了这里,关于决策树、随机森林可视化的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 七个常用的机器学习算法详解:决策树与随机森林的深入解析

    hello宝子们...我们是艾斯视觉擅长ui设计和前端开发10年+经验!希望我的分享能帮助到您!如需帮助可以评论关注私信我们一起探讨!致敬感谢感恩! 在机器学习中,决策树和随机森林是两个非常常用的算法。它们都属于监督学习的范畴,可以用于分类和回归问题。本文将对

    2024年02月19日
    浏览(47)
  • 【机器学习算法】决策树和随机森林在计算机视觉中的应用

    决策树和随机森林在计算机视觉中有着广泛的应用。决策树作为一种简单而强大的分类模型,可以用于图像分类、目标检测、特征提取等任务。它能够根据图像的特征逐层进行判断和分类,从而实现对图像数据的智能分析和理解。随机森林作为一种集成学习方法,利用多棵决

    2024年04月13日
    浏览(61)
  • python机器学习——分类模型评估 & 分类算法(k近邻,朴素贝叶斯,决策树,随机森林,逻辑回归,svm)

    交叉验证:为了让被评估的模型更加准确可信 交叉验证:将拿到的数据,分为训练和验证集。以下图为例:将数据分成5份,其中一份作为验证集。然后经过5次(组)的测试,每次都更换不同的验证集。即得到5组模型的结果,取平均值作为最终结果。又称5折交叉验证。 通常情

    2024年02月03日
    浏览(67)
  • python机器学习数据建模与分析——决策树详解及可视化案例

    你是否玩过二十个问题的游戏,游戏的规则很简单:参与游戏的一方在脑海里想某个事物,其他参与者向他提问题,只允许提20个问题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围。决策树的工作原理与20个问题类似,用户输人一系

    2024年02月03日
    浏览(46)
  • 【阿旭机器学习实战】【36】糖尿病预测---决策树建模及其可视化

    【阿旭机器学习实战】系列文章主要介绍机器学习的各种算法模型及其实战案例,欢迎点赞,关注共同学习交流。 关注GZH: 阿旭算法与机器学习 ,回复:“ ML36 ”即可获取本文数据集、源码与项目文档 pregnant glucose bp skin insulin bmi pedigree age label 0 6 148 72 35 0 33.6 0.627 50 1 1 1

    2024年02月11日
    浏览(51)
  • 机器学习——决策树/随机森林

    决策树可以做分类也可以做回归,决策树容易过拟合 决策树算法的基本原理是依据信息学熵的概念设计的(Logistic回归和贝叶斯是基于概率论),熵最早起源于物理学,在信息学当中表示不确定性的度量,熵值越大表示不确定性越大。 ID3算法就是一种通过熵的变化,构造决策

    2024年02月07日
    浏览(38)
  • 机器学习——决策树与随机森林

    机器学习——决策树与随机森林 决策树和随机森林都是常见的机器学习算法,用于分类和回归任务,本文将对这两种算法进行介绍。 决策树算法是一种基于树结构的分类和回归算法。它通过对数据集进行 递归地二分 ,选择最佳的特征进行划分,直到达到终止条件。 决策树

    2024年02月09日
    浏览(38)
  • 机器学习实验——使用决策树和随机森林对数据分类

    使用决策树算法和随机森林算法对income_classification.csv的收入水平进行分类。训练集和测试集的比例是7:3,选取适当的特征列,使得针对测试样本的分类准确率在80%以上,比较2种分类方法的准确率。 数据说明: 特征列: 分类标签列:income 1、读入数据并显示数据的维度和前

    2024年02月04日
    浏览(46)
  • Python利用线性回归、随机森林等对红酒数据进行分析与可视化实战(附源码和数据集 超详细)

    需要源码和数据集请点赞关注收藏后评论区留言私信~~~ 下面对天池项目中的红酒数据集进行分析与挖掘 1:导入模块 2:颜色和打印精度设置 3:获取数据并显示数据维度 字段中英文对照表如下   然后利用describe函数显示数值属性的统计描述值  显示quality取值的相关信息 显示

    2023年04月13日
    浏览(53)
  • Python随机森林、线性回归对COVID-19疫情、汇率数据预测死亡率、病例数、失业率影响可视化...

    自2019年12月以来,传染性冠状病毒疾病2019(COVID-19)迅速席卷全球,并在短短几个月内达到了大流行状态 ( 点击文末“阅读原文”获取完整 代码数据 )。 相关视频 迄今为止,全球已报告了超过6800万例病例。为了应对这一大流行病,实施了公共卫生政策,通过实施“居家令

    2024年02月10日
    浏览(29)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包