【模块系列】STM32&TCS3472

这篇具有很好参考价值的文章主要介绍了【模块系列】STM32&TCS3472。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

  手上正好有TCS3472模块,也正好想在加深一下自己对I2C协议的理解和应用,所以就写了这个代码库出来。参考的资料主要来源于TCS3472的数据手册,和arduino中MH_TCS3472库的宏定义,和函数名称,我就没有重新命名,方便大家理解和使用修改之类的。

环境

  • 开发板:STM32C6T6最小系统板

  • 案例的代码环境:Keil5+STM32CubeMX生成的HAL库,OLED(4P)+TCS3472

  • 案例接线:TCS3472模块的VIN接到ST-LINK的5V,OLED模块VCC接3.3V。TCS3472和OLED的SDA接到PB9,SCL接到PB8。TCS3472模块的LED引脚接PA3(闪烁)或GND都行,不接的话LED的会一直亮,导致RGB值与透明度计算后大于256的。

    注意:假如TCS3472模块的VIN接到板载的3.3V的话,可能会发生供电不足的情况。

特点

下述介绍参考数据手册

  • 支持I2C协议快速模式,接口数据传输速率高达 400 kbit/s

  • TCS3472提供红、绿、蓝(RGB)和透明光©感应值的16位数字量的返回。

  • 红、绿、蓝(RGB)和透明光。带红外屏蔽滤光片的感应器。可编程模拟增益和积分时间。3,800,000:1。动态范围灵敏度极高-非常适合在暗玻璃后操作。

  • 外置可编程中断引脚,启用可屏蔽中断当超出预设值时,系统会发出电平式中断可编程上下限阈值,带持久性过滤器,从而减少MCU的开销

  • 有着电源管理,低功耗-2.5μA 休眠状态65μA等待状态,可编程等待状态时间从2.4ms 至>7 秒

代码

  代码方面除了CubeMX生成的工程框架外,还导入了OLED(4P),自制了MyI2C,TCS34725库,假如其它项目要用到的话注意也要导入这几个库。下面仅展示TCS34725库,完整工程文件会放在文章末尾的

TCS34725.H

#ifndef __TCS34725_H__
#define __TCS34725_H__

#define TCS34725_ADDRESS          (0x52)		// 八位地址
#define TCS34725_ADDRESS_7bit     (0x29)		// 七位地址

#define TCS34725_COMMAND_BIT      (0x80)

#define TCS34725_ENABLE           (0x00)
#define TCS34725_ENABLE_AIEN      (0x10)    ///< RGBC Interrupt Enable 
#define TCS34725_ENABLE_WEN       (0x08)    ///< Wait enable - Writing 1 activates the wait timer 
#define TCS34725_ENABLE_AEN       (0x02)    ///< RGBC Enable - Writing 1 actives the ADC, 0 disables it 
#define TCS34725_ENABLE_PON       (0x01)    ///< Power on - Writing 1 activates the internal oscillator, 0 disables it 
#define TCS34725_ATIME            (0x01)    ///< Integration time 
#define TCS34725_WTIME            (0x03)    ///< Wait time (if TCS34725_ENABLE_WEN is asserted) 
#define TCS34725_WTIME_2_4MS      (0xFF)    ///< WLONG0 = 2.4ms   WLONG1 = 0.029s 
#define TCS34725_WTIME_204MS      (0xAB)    ///< WLONG0 = 204ms   WLONG1 = 2.45s  
#define TCS34725_WTIME_614MS      (0x00)    ///< WLONG0 = 614ms   WLONG1 = 7.4s   
#define TCS34725_AILTL            (0x04)    ///< Clear channel lower interrupt threshold 
#define TCS34725_AILTH            (0x05)
#define TCS34725_AIHTL            (0x06)    ///< Clear channel upper interrupt threshold 
#define TCS34725_AIHTH            (0x07)
#define TCS34725_PERS             (0x0C)    ///< Persistence register - basic SW filtering mechanism for interrupts 
#define TCS34725_PERS_NONE        (0b0000)  ///< Every RGBC cycle generates an interrupt                                
#define TCS34725_PERS_1_CYCLE     (0b0001)  ///< 1 clean channel value outside threshold range generates an interrupt   
#define TCS34725_PERS_2_CYCLE     (0b0010)  ///< 2 clean channel values outside threshold range generates an interrupt  
#define TCS34725_PERS_3_CYCLE     (0b0011)  ///< 3 clean channel values outside threshold range generates an interrupt  
#define TCS34725_PERS_5_CYCLE     (0b0100)  ///< 5 clean channel values outside threshold range generates an interrupt  
#define TCS34725_PERS_10_CYCLE    (0b0101)  ///< 10 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_15_CYCLE    (0b0110)  ///< 15 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_20_CYCLE    (0b0111)  ///< 20 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_25_CYCLE    (0b1000)  ///< 25 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_30_CYCLE    (0b1001)  ///< 30 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_35_CYCLE    (0b1010)  ///< 35 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_40_CYCLE    (0b1011)  ///< 40 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_45_CYCLE    (0b1100)  ///< 45 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_50_CYCLE    (0b1101)  ///< 50 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_55_CYCLE    (0b1110)  ///< 55 clean channel values outside threshold range generates an interrupt 
#define TCS34725_PERS_60_CYCLE    (0b1111)  ///< 60 clean channel values outside threshold range generates an interrupt 
#define TCS34725_CONFIG           (0x0D)
#define TCS34725_CONFIG_WLONG     (0x02)    ///< Choose between short and long (12x) wait times via TCS34725_WTIME 
#define TCS34725_CONTROL          (0x0F)    ///< Set the gain level for the sensor 
#define TCS34725_ID               (0x12)    ///< 0x44 = TCS34721/TCS34725, 0x4D = TCS34723/TCS34727 
#define TCS34725_STATUS           (0x13)
#define TCS34725_STATUS_AINT      (0x10)    ///< RGBC Clean channel interrupt 
#define TCS34725_STATUS_AVALID    (0x01)    ///< Indicates that the RGBC channels have completed an integration cycle 
#define TCS34725_CDATAL           (0x14)    ///< Clear channel data 
#define TCS34725_CDATAH           (0x15)
#define TCS34725_RDATAL           (0x16)    ///< Red channel data 
#define TCS34725_RDATAH           (0x17)
#define TCS34725_GDATAL           (0x18)    ///< Green channel data 
#define TCS34725_GDATAH           (0x19)
#define TCS34725_BDATAL           (0x1A)    ///< Blue channel data 
#define TCS34725_BDATAH           (0x1B)

typedef enum
{
  TCS34725_INTEGRATIONTIME_2_4MS  = 0xFF,   ///<  2.4ms - 1 cycle    - Max Count: 1024  
  TCS34725_INTEGRATIONTIME_24MS   = 0xF6,   ///<  24ms  - 10 cycles  - Max Count: 10240 
  TCS34725_INTEGRATIONTIME_50MS   = 0xEB,   ///<  50ms  - 20 cycles  - Max Count: 20480 
  TCS34725_INTEGRATIONTIME_101MS  = 0xD5,   ///<  101ms - 42 cycles  - Max Count: 43008 
  TCS34725_INTEGRATIONTIME_154MS  = 0xC0,   ///<  154ms - 64 cycles  - Max Count: 65535 
  TCS34725_INTEGRATIONTIME_700MS  = 0x00    ///<  700ms - 256 cycles - Max Count: 65535 
}
tcs34725IntegrationTime_t;

typedef enum
{
  TCS34725_GAIN_1X                = 0x00,   ///<  No gain  
  TCS34725_GAIN_4X                = 0x01,   ///<  4x gain  
  TCS34725_GAIN_16X               = 0x02,   ///<  16x gain 
  TCS34725_GAIN_60X               = 0x03    ///<  60x gain 
}
tcs34725Gain_t;

typedef unsigned          char uint8_t;
typedef unsigned short     int uint16_t;
typedef unsigned           int uint32_t;


/*****	底层函数	 *****/
void TCS34725_WriteReg(uint8_t reg,uint8_t data);
uint8_t TCS34725_ReadReg(uint8_t reg);

/*****	功能函数	 *****/
void TCS34725_Init(void);						// 初始化TCS34725配置
void TCS34725_enable(void);					// 使能器件
void TCS34725_lock(void);						// 使能TCS34725内部中断
uint8_t TCS34725_getID(void);			// 获取器件ID
uint8_t TCS34725_getStatus(void);	// 获取TCS34725状态
void TCS34725_setGain(tcs34725Gain_t gain);		// 设置增益
void TCS34725_setIntegrationTime(tcs34725IntegrationTime_t time);		// 设置时间增益
void TCS34725_getRGBC(uint16_t *r, uint16_t *g, uint16_t *b, uint16_t *c);		// 获取TCS34725的颜色反馈


#endif

TCS34725.C

#include "TCS34725.h"
#include "MyI2C.h"

/**
 * @描述:基于TCS34725 写寄存器 ID-地址-数据
 */
void TCS34725_WriteReg(uint8_t reg,uint8_t data)
{
	MyI2C_Start();					
	MyI2C_SendByte(TCS34725_ADDRESS);			
  MyI2C_ReceiveAck();	
	MyI2C_SendByte(TCS34725_COMMAND_BIT | reg);		
  MyI2C_ReceiveAck();			
	MyI2C_SendByte(data);
	MyI2C_ReceiveAck();
  MyI2C_Stop();						
}

/**
 * @描述:基于TCS34725 读寄存器 ID-地址-数据
 */
uint8_t TCS34725_ReadReg(uint8_t reg)
{
	uint8_t reData = 0;
	MyI2C_Start();					
	MyI2C_SendByte(TCS34725_ADDRESS);		
	MyI2C_ReceiveAck();	
	MyI2C_SendByte(TCS34725_COMMAND_BIT | reg);			
  MyI2C_ReceiveAck();
	
	MyI2C_Start();	// 666
	MyI2C_SendByte(TCS34725_ADDRESS | 0x01);		
	MyI2C_ReceiveAck();	
	reData = MyI2C_ReceiveByte();
	MyI2C_SendAck(1);
	
	MyI2C_Stop();		
  return reData;
}


/**
* @描述:初始化TCS34725配置
*/
void TCS34725_Init()
{
	TCS34725_setIntegrationTime(TCS34725_INTEGRATIONTIME_101MS);
	TCS34725_setGain(TCS34725_GAIN_1X);
	TCS34725_enable();
}

/**
* @描述:TCS34725毫秒级延时
*/
void TCS34725_DelayMs(uint16_t ms)
{
	char i;
	for(i = 0;i < ms;i++)
	{
		MyI2C_DelayUs(1000);
	}
	
}

/**
* @描述:设置时间增益
*/
void TCS34725_setIntegrationTime(tcs34725IntegrationTime_t time)
{
  // 更新时序寄存器
	TCS34725_WriteReg(TCS34725_ATIME,time);
}

/**
* @描述:设置增益
*/
void TCS34725_setGain(tcs34725Gain_t gain)
{
	// 设置增益
	TCS34725_WriteReg(TCS34725_CONTROL,gain);

}

/**
* @描述:使能器件
*/
void TCS34725_enable(void)
{
	// 开启内部振荡器--启动
	TCS34725_WriteReg(TCS34725_ENABLE,TCS34725_ENABLE_PON);
  TCS34725_DelayMs(3);
	// 启动ADC
	TCS34725_WriteReg(TCS34725_ENABLE,TCS34725_ENABLE_PON | TCS34725_ENABLE_AEN);
}

/**
* @描述:读取TCS34725指定寄存器
*/
uint16_t TCS34725_readRegWord(uint8_t reg)
{
  uint16_t h = 0x0000;		// 高八位
	uint16_t l = 0x0000;		// 低八位
	
	MyI2C_Start();															// I2C开始条件
	MyI2C_SendByte(TCS34725_ADDRESS);						// I2C发送字节
  MyI2C_ReceiveAck();													// I2C接收应答
	MyI2C_SendByte(TCS34725_COMMAND_BIT | reg | 0x20);	// I2C发送字节
	MyI2C_ReceiveAck();													// I2C接收应答
	
  MyI2C_Start();	// 666
	MyI2C_SendByte(TCS34725_ADDRESS | 0x01);		
	MyI2C_ReceiveAck();	

  h = MyI2C_ReceiveByte();			// I2C接收字节
	MyI2C_SendAck(0);							// I2C发送应答
	l = MyI2C_ReceiveByte();			// I2C接收字节
	MyI2C_SendAck(1);							// I2C发送应答
	MyI2C_Stop();									// I2C结束条件
	
  h <<= 8;
  h |= l;
  return h;
}

/**
* @描述:获取TCS34725的颜色反馈
*/
void TCS34725_getRGBC(uint16_t *r, uint16_t *g, uint16_t *b, uint16_t *c)
{

  *c = TCS34725_readRegWord(TCS34725_CDATAL);
  *r = TCS34725_readRegWord(TCS34725_RDATAL);
  *g = TCS34725_readRegWord(TCS34725_GDATAL);
  *b = TCS34725_readRegWord(TCS34725_BDATAL);
  
  // 给定一定的采集后延时
	TCS34725_DelayMs(100);
}

/**
* @描述:使能TCS34725内部中断
*/
void TCS34725_lock()
{
	uint8_t r = TCS34725_ReadReg(TCS34725_ENABLE);
	r |= TCS34725_ENABLE_AIEN;
	TCS34725_WriteReg(TCS34725_ENABLE, r);
}

/**
* @描述:获取器件ID
* @返回:0x44 = TCS34721/TCS34725, 0x4D = TCS34723/TCS34727 
*/
uint8_t TCS34725_getID()
{
	return TCS34725_ReadReg(TCS34725_ID);
}

/**
* @描述:获取TCS34725状态
* @返回:返回该寄存器数值
*/
uint8_t TCS34725_getStatus()
{
	return TCS34725_ReadReg(TCS34725_STATUS);
}

现象

  下面为代码现象。OLED上显示的分别是,ID,8位R,8位G,8位B,16位C的值,可以看出来,测出的结果跟我设定的结果还差一点,不过能测量出个大概,比如偏红色啊,偏蓝色啊。当然可能也是我的参数没配置好,大家想要更高精度的话,就要关注TCS34725_Init()里面的时间增益,和数值增益了。

【模块系列】STM32&TCS3472,模块系列,stm32,嵌入式硬件,单片机,mcu

【模块系列】STM32&TCS3472,模块系列,stm32,嵌入式硬件,单片机,mcu

工程

链接包含资料:Keil5工程代码*1,TCS34727资料手册(英文)*1

链接:https://pan.baidu.com/s/1AapcmqJjpgtlvu-eMr3Bpg  提取码:wq6k文章来源地址https://www.toymoban.com/news/detail-808922.html

到了这里,关于【模块系列】STM32&TCS3472的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【嵌入式学习笔记】嵌入式基础9——STM32启动过程

    程序段交叉引用关系(Section Cross References):描述各文件之间函数调用关系 删除映像未使用的程序段(Removing Unused input sections from the image):描述工程中未用到被删除的冗余程序段(函数/数据) 映像符号表(Image Symbol Table):描述各符号(程序段/数据)在存储器中的地址、类

    2024年02月15日
    浏览(81)
  • stm32嵌入式实验考核

    STM32 实验考核题目 1. 利用 STM32 小板实现:控制外接 LED 灯每隔 3 秒钟亮暗变换,同 时在 PC 机上显示 MCU 的计时时间,MCU 的初始时间由 PC 机 方设置。 2. 利用 STM32 小板实现:利用导线外接 GPIO 口模拟 2 个按键输入, 根据输入组合的四种情况,分别控制三色灯四种流水灯效果

    2024年02月03日
    浏览(49)
  • STM32串口通信详解(嵌入式学习)

    时钟信号在电子领域中是指用于同步和定时电路操作的周期性信号。它在数字系统和通信系统中起着至关重要的作用,用于协调各个组件之间的数据传输和操作。 时钟信号有以下几个重要的方面: 频率:时钟信号的频率是指单位时间内信号周期的数量。它通常以赫兹(Hz)为

    2024年02月09日
    浏览(67)
  • STM32的时钟系统(嵌入式学习)

    时钟是指用于计量和同步时间的装置或系统。时钟是嵌入式系统的脉搏,处理器内核在时钟驱动下完成指令执行,状态变换等动作,外设部件在时钟的驱动下完成各种工作,例如:串口数据的发送、AD转换、定时器计数等。因此时钟对于计算机系统是至关重要的,通常时钟系

    2024年02月16日
    浏览(47)
  • 嵌入式 STM32 通讯协议--MODBUS

    目录 一、自定义通信协议 1、协议介绍 2、网络协议 3、自定义的通信协议  二、MODBUS通信协议 1、概述 2、MODBUS帧结构  协议描述 3、MODBUS数据模型   4、MODBUS事务处理的定义 5、MODBUS功能码  6、功能码定义   7、MODBUS数据链路层 8、MODBUS地址规则  9、MODBUS帧描述 10、MODBUS两种

    2024年02月11日
    浏览(62)
  • 嵌入式——新建STM32工程(标准库)

    目录 一、初识标准库 1.CMSIS标准及库层级关系 2.库文件介绍 (1)Libraries文件夹 ①CMSIS文件夹 ②STM32F10x_Std_Periph_Driver文件夹 ③ 在用库建立一个完整的工程时,还需要添加stm32f10x_it.c、 stm32f10x_conf.h 和 system_stm32f10x.c文件 (2)Project文件夹 (3)Utilities文件夹 3.库各文件之间的关

    2024年01月23日
    浏览(53)
  • 嵌入式C语言基础(STM32)

    前言:一条混迹嵌入式3年的老咸鱼,想到自己第一次接触到stm32的库函数时,c语言稀碎,痛不欲生的场景,该文章为萌新指条明路。 位操作在嵌入式中常用于直接对芯片的寄存器进行操作,当时作为初学者的我看着一脸懵逼,至于为什么这样修改,下面好好分析一下。  一

    2024年02月02日
    浏览(56)
  • STM32的中断系统详解(嵌入式学习)

    中断是处理器中的一种机制,用于响应和处理突发事件或紧急事件。当发生中断时,当前正在执行的程序会被暂时中止,处理器会跳转到中断处理程序(也称为中断服务例程),对中断事件进行处理。处理完中断后,处理器再返回到被中断的程序继续执行。 中断可以分为内部

    2024年02月12日
    浏览(69)
  • 嵌入式学习笔记——STM32的时钟树

    在之前的所有代码编程的过程中,似乎每次都绕不开一个叫做时钟使能的东西,当时我们是在数据手册上直接看其挂接在那条时钟线上的,那么STM32内部的时钟到底是怎么一个构型呢,本文来对此做一个介绍。 老规矩,一个新的名词出现,首先需要搞清楚它是个啥,下图中对

    2024年02月02日
    浏览(53)
  • 【嵌入式】STM32F031K4U6、STM32F031K6U6、STM32F031K6T6主流ARM Cortex-M0基本型系列MCU规格参数

    一、电路原理图 【嵌入式】STM32F031K4U6、STM32F031K6U6、STM32F031K6T6主流ARM Cortex-M0基本型系列MCU —— 明佳达 二、规格参数 1、 STM32F031K4U6 (16KB)闪存 32UFQFPN 核心处理器:ARM® Cortex®-M0 内核规格:32 位单核 速度:48MHz 连接能力:I²C,IrDA,LINbus,SPI,UART/USART 外设:DMA,I²S,POR,

    2024年02月04日
    浏览(41)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包