343. 整数拆分(动态规划)

这篇具有很好参考价值的文章主要介绍了343. 整数拆分(动态规划)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

题目:

给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k >= 2 ),并使这些整数的乘积最大化。

返回 你可以获得的最大乘积 。

示例 1:

输入: n = 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1。
示例 2:

输入: n = 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。

提示:

2 <= n <= 58

思路:

本题比之前面的动态规划还要难理解点,理解难度主要在动态规划递推公式的推导上和dp数组的含义理解上。本题我也是根据题解分析才理解的,写本篇博客也能更加加深自己的理解。

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:分拆数字i,可以得到的最大乘积为dp[i]。

dp[i]的定义将贯彻整个解题过程,下面哪一步想不懂了,就想想dp[i]究竟表示的是啥!dp[n]就是最终题解答案。

  1. 确定递推公式

可以想 dp[i]最大乘积是怎么得到的呢?

其实可以从1遍历j,然后有两种渠道得到dp[i].

一个是j * (i - j) 直接相乘。

一个是j * dp[i - j],相当于是拆分(i - j),对这个拆分不理解的话,可以回想dp数组的定义。

j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

那么在取最大值的时候,为什么还要比较dp[i]呢?

因为在递推公式推导的过程中,每次计算dp[i],取最大的而已。

每一趟循环中都会计算出dp[i]的数值然后用前面计算好的dp[i](如:dp[3],dp[4])来计算的之后的dp数组,这么说可能比较抽象,可以根据代码在纸上写下每次计算的过程和结果就好理解了。

  1. dp的初始化

rendp[0] dp[1]应该初始化多少呢?

严格从dp[i]的定义来说,dp[0] dp[1] 就不应该初始化,也就是没有意义的数值。

拆分0和拆分1的最大乘积是多少?

这是无解的。

这里只初始化dp[2] = 1,从dp[i]的定义来说,拆分数字2,得到的最大乘积是1

  1. 确定遍历顺序

毋庸置疑,遍历顺序肯定从前往后遍历,先来看看递归公式:dp[i] = max(dp[i], (i - j) * j, dp[i - j] * j); dp[i] 是依靠 dp[i - j]的状态,所以遍历i一定是从前向后遍历,先有dp[i - j]再有dp[i]。

        for i in range(3, n + 1):
            for j in range(1, i - 1):
                dp[i] = max(dp[i], dp[i - j] * j, j * (i - j))

注意 枚举j的时候,是从1开始的。从0开始的话,那么让拆分一个数拆个0,求最大乘积就没有意义了。

j的结束条件是 j < i - 1 ,其实 j < i 也是可以的,不过可以节省一步,例如让j = i - 1,的话,其实在 j = 1的时候,这一步就已经拆出来了,重复计算,所以 j < i - 1

至于 i是从3开始,这样dp[i - j]就是dp[2]正好可以通过我们初始化的数值求出来。

更优化一步,可以这样:

        for i in range(3, n + 1):
            for j in range(1, i - 1):
                dp[i] = max(dp[i], dp[i - j] * j, j * (i - j))

因为拆分一个数n 使之乘积最大,那么一定是拆分成m个近似相同的子数相乘才是最大的。

例如 6 拆成 3 * 3, 10 拆成 3 * 3 * 4。 100的话 也是拆成m个近似数组的子数 相乘才是最大的。

只不过我们不知道m究竟是多少而已,但可以明确的是m一定大于等于2,既然m大于等于2,也就是 最差也应该是拆成两个相同的 可能是最大值。

那么 j 遍历,只需要遍历到 n/2 就可以,后面就没有必要遍历了,一定不是最大值。

  1. 举例推导dp数组

举例当n为10 的时候,dp数组里的数值,如下:
343. 整数拆分(动态规划),python,算法,动态规划,算法,leetcode,数据结构,python文章来源地址https://www.toymoban.com/news/detail-808938.html

代码及详细注释:

class Solution:
    def integerBreak(self, n: int) -> int:
        # 创建一个长度为 n+1 的数组,用于存储最大乘积结果
        dp = [0] * (n + 1)
        dp[2] = 1  # 当 n=2 时,最大乘积为 1

        # 遍历从 3 到 n 的每个数字
        for i in range(3, n + 1):
            # 遍历从 1 到 i-1 的每个数字
            for j in range(1, i - 1):
                # 计算当前数字 i 的最大乘积
                dp[i] = max(dp[i], dp[i - j] * j, j * (i - j))
        # 返回数字 n 的最大乘积
        return dp[n]

  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n)

到了这里,关于343. 整数拆分(动态规划)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 343. 整数拆分(动态规划)

    给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k = 2 ),并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n = 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: n = 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 提示: 2 = n = 58 本题比之前面的动态规划

    2024年01月20日
    浏览(47)
  • 【力扣】343. 整数拆分 <动态规划、数学>

    给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k = 2 ),并使这些整数的乘积最大化。返回可以获得的最大乘积 。 示例 1: 输入: n = 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: n = 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 提示: 2 = n = 58 动态规划 确定 dp 数组以及下

    2024年02月09日
    浏览(42)
  • 我在代码随想录|写代码Day33 | 动态规划| 路径问题| 62.不同路径,63. 不同路径 II,343. 整数拆分

    🔥博客介绍`: 27dCnc 🎥系列专栏: 数据结构与算法 算法入门 C++项目 🎥 当前专栏: 算法入门 专题 : 数据结构帮助小白快速入门算法 👍👍👍👍👍👍👍👍👍👍👍👍 ☆*: .。. o(≧▽≦)o .。.:*☆ ❤️感谢大家点赞👍收藏⭐评论✍️ 今日学习打卡 代码随想录 - 动态规划

    2024年03月11日
    浏览(58)
  • 代码随想录Leetcode 343. 整数拆分

            dp[i]表示i所能拆分的最大乘积,则dp[i] 与dp[i - 1]的递推公式是:                 max( 1~n * dp[n ~ 1])

    2024年02月21日
    浏览(74)
  • 算法训练第四十一天|343. 整数拆分 、96.不同的二叉搜索树

    题目链接:343. 整数拆分 参考:https://programmercarl.com/0343.%E6%95%B4%E6%95%B0%E6%8B%86%E5%88%86.html 题目描述 给定一个正整数 n,将其拆分为至少两个正整数的和,并使这些整数的乘积最大化。 返回你可以获得的最大乘积。 示例 1: 输入: 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入:

    2023年04月24日
    浏览(40)
  • 算法刷刷刷|动态规划篇|509.斐波那契数| 70.爬楼梯| 746.使用最小花费爬楼梯| 62.不同路径| 63不同路径2| 343.正数拆分 | 96.不同的二叉搜索树

    509. 斐波那契数 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n 1 给定 n ,请计算 F(n) 。 70.爬楼梯 746.使用最小花费爬楼梯 给你一个整数

    2023年04月23日
    浏览(56)
  • 343. 整数拆分

    343. 整数拆分 https://leetcode.cn/problems/integer-break/description/ 贴一张对比数据图,大家可以自行验证,是否上述规律会得到正确答案。

    2024年02月14日
    浏览(42)
  • 整数拆分(力扣)动态规划 JAVA

    给定一个正整数 n ,将其拆分为 k 个 正整数 的和( k = 2 ),并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n = 2 输出: 1 解释: 2 = 1 + 1, 1 × 1 = 1。 示例 2: 输入: n = 10 输出: 36 解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36。 提示: 2 = n = 58 里程碑意义 解题思路:

    2024年02月17日
    浏览(44)
  • 【力扣刷题】整数拆分(动态规划)

    个人简历: 全栈领域新星博主, 万粉博主、 帮助初学者入门,记录自己的学习过程 个人主页:天寒雨落的博客_CSDN博客-C,CSDN竞赛,python领域博主 热门专栏:初学者入门C语言_天寒雨落的博客-CSDN博客   目录 动态规划 整数拆分 题目 思路 代码 执行结果 其基本思想是将待求解

    2024年02月03日
    浏览(42)
  • leetcode 动态规划(单词拆分)

    139.单词拆分 力扣题目链接(opens new window) 给定一个非空字符串 s 和一个包含非空单词的列表 wordDict,判定 s 是否可以被空格拆分为一个或多个在字典中出现的单词。 说明: 拆分时可以重复使用字典中的单词。 你可以假设字典中没有重复的单词。 示例 1: 输入: s = “leetcode”

    2024年02月22日
    浏览(38)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包