C++力扣题目617--合并二叉树

这篇具有很好参考价值的文章主要介绍了C++力扣题目617--合并二叉树。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

给你两棵二叉树: root1 和 root2 。

想象一下,当你将其中一棵覆盖到另一棵之上时,两棵树上的一些节点将会重叠(而另一些不会)。你需要将这两棵树合并成一棵新二叉树。合并的规则是:如果两个节点重叠,那么将这两个节点的值相加作为合并后节点的新值;否则,不为 null 的节点将直接作为新二叉树的节点。

返回合并后的二叉树。

注意: 合并过程必须从两个树的根节点开始。

示例 1:

C++力扣题目617--合并二叉树,c++,leetcode,算法

输入:root1 = [1,3,2,5], root2 = [2,1,3,null,4,null,7]
输出:[3,4,5,5,4,null,7]

示例 2:

输入:root1 = [1], root2 = [1,2]
输出:[2,2]

 

思路

相信这道题目很多同学疑惑的点是如何同时遍历两个二叉树呢?

其实和遍历一个树逻辑是一样的,只不过传入两个树的节点,同时操作。

#递归

二叉树使用递归,就要想使用前中后哪种遍历方式?

本题使用哪种遍历都是可以的!

我们下面以前序遍历为例。

动画如下:

C++力扣题目617--合并二叉树,c++,leetcode,算法

那么我们来按照递归三部曲来解决:

  1. 确定递归函数的参数和返回值:

首先要合入两个二叉树,那么参数至少是要传入两个二叉树的根节点,返回值就是合并之后二叉树的根节点。

代码如下:

TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
  1. 确定终止条件:

因为是传入了两个树,那么就有两个树遍历的节点t1 和 t2,如果t1 == NULL 了,两个树合并就应该是 t2 了(如果t2也为NULL也无所谓,合并之后就是NULL)。

反过来如果t2 == NULL,那么两个数合并就是t1(如果t1也为NULL也无所谓,合并之后就是NULL)。

代码如下:

if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1


 

  1. 确定单层递归的逻辑:

单层递归的逻辑就比较好写了,这里我们重复利用一下t1这个树,t1就是合并之后树的根节点(就是修改了原来树的结构)。

那么单层递归中,就要把两棵树的元素加到一起。

t1->val += t2->val;

接下来t1 的左子树是:合并 t1左子树 t2左子树之后的左子树。

t1 的右子树:是 合并 t1右子树 t2右子树之后的右子树。

最终t1就是合并之后的根节点。

代码如下:

t1->left = mergeTrees(t1->left, t2->left);
t1->right = mergeTrees(t1->right, t2->right);
return t1;

此时前序遍历,完整代码就写出来了,如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->val += t2->val;                             // 中
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

那么中序遍历也是可以的,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->val += t2->val;                             // 中
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        return t1;
    }
};

后序遍历依然可以,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2; // 如果t1为空,合并之后就应该是t2
        if (t2 == NULL) return t1; // 如果t2为空,合并之后就应该是t1
        // 修改了t1的数值和结构
        t1->left = mergeTrees(t1->left, t2->left);      // 左
        t1->right = mergeTrees(t1->right, t2->right);   // 右
        t1->val += t2->val;                             // 中
        return t1;
    }
};

但是前序遍历是最好理解的,我建议大家用前序遍历来做就OK。

如上的方法修改了t1的结构,当然也可以不修改t1和t2的结构,重新定义一个树。

不修改输入树的结构,前序遍历,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2;
        if (t2 == NULL) return t1;
        // 重新定义新的节点,不修改原有两个树的结构
        TreeNode* root = new TreeNode(0);
        root->val = t1->val + t2->val;
        root->left = mergeTrees(t1->left, t2->left);
        root->right = mergeTrees(t1->right, t2->right);
        return root;
    }
};

#迭代法

使用迭代法,如何同时处理两棵树呢?

思路我们在二叉树:我对称么? (opens new window)中的迭代法已经讲过一次了,求二叉树对称的时候就是把两个树的节点同时加入队列进行比较。

本题我们也使用队列,模拟的层序遍历,代码如下:

class Solution {
public:
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        if (t1 == NULL) return t2;
        if (t2 == NULL) return t1;
        queue<TreeNode*> que;
        que.push(t1);
        que.push(t2);
        while(!que.empty()) {
            TreeNode* node1 = que.front(); que.pop();
            TreeNode* node2 = que.front(); que.pop();
            // 此时两个节点一定不为空,val相加
            node1->val += node2->val;

            // 如果两棵树左节点都不为空,加入队列
            if (node1->left != NULL && node2->left != NULL) {
                que.push(node1->left);
                que.push(node2->left);
            }
            // 如果两棵树右节点都不为空,加入队列
            if (node1->right != NULL && node2->right != NULL) {
                que.push(node1->right);
                que.push(node2->right);
            }

            // 当t1的左节点 为空 t2左节点不为空,就赋值过去
            if (node1->left == NULL && node2->left != NULL) {
                node1->left = node2->left;
            }
            // 当t1的右节点 为空 t2右节点不为空,就赋值过去
            if (node1->right == NULL && node2->right != NULL) {
                node1->right = node2->right;
            }
        }
        return t1;
    }
};


 

#拓展

当然也可以秀一波指针的操作,这是我写的野路子,大家就随便看看就行了,以防带跑偏了。

如下代码中,想要更改二叉树的值,应该传入指向指针的指针。

代码如下:(前序遍历)

class Solution {
public:
    void process(TreeNode** t1, TreeNode** t2) {
        if ((*t1) == NULL && (*t2) == NULL) return;
        if ((*t1) != NULL && (*t2) != NULL) {
            (*t1)->val += (*t2)->val;
        }
        if ((*t1) == NULL && (*t2) != NULL) {
            *t1 = *t2;
            return;
        }
        if ((*t1) != NULL && (*t2) == NULL) {
            return;
        }
        process(&((*t1)->left), &((*t2)->left));
        process(&((*t1)->right), &((*t2)->right));
    }
    TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
        process(&t1, &t2);
        return t1;
    }
};

#总结

合并二叉树,也是二叉树操作的经典题目,如果没有接触过的话,其实并不简单,因为我们习惯了操作一个二叉树,一起操作两个二叉树,还会有点懵懵的。

这不是我们第一次操作两棵二叉树了,在二叉树:我对称么? (opens new window)中也一起操作了两棵二叉树。

迭代法中,一般一起操作两个树都是使用队列模拟类似层序遍历,同时处理两个树的节点,这种方式最好理解,如果用模拟递归的思路的话,要复杂一些。

最后拓展中,我给了一个操作指针的野路子,大家随便看看就行了,如果学习C++的话,可以再去研究研究。文章来源地址https://www.toymoban.com/news/detail-809113.html

到了这里,关于C++力扣题目617--合并二叉树的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • C++力扣题目101--对称二叉树

    力扣题目链接(opens new window) 给定一个二叉树,检查它是否是镜像对称的。   首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点! 对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了 其实我们要比较

    2024年01月25日
    浏览(38)
  • C++力扣题目654--最大二叉树

    给定一个不重复的整数数组  nums  。  最大二叉树  可以用下面的算法从  nums  递归地构建: 创建一个根节点,其值为  nums  中的最大值。 递归地在最大值  左边  的  子数组前缀上  构建左子树。 递归地在最大值  右边  的  子数组后缀上  构建右子树。 返回  nums  构

    2024年01月20日
    浏览(40)
  • C++力扣题目104--二叉树的最大深度

    给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7], 返回它的最大深度 3 。 看完本篇可以一起做了如下两道题目: 104.二叉树的最大深度(opens n

    2024年01月16日
    浏览(64)
  • C++力扣题目--94,144,145二叉树非递归(迭代)遍历

    为什么可以用迭代法(非递归的方式)来实现二叉树的前后中序遍历呢? 我们在栈与队列:匹配问题都是栈的强项 (opens new window)中提到了, 递归的实现就是:每一次递归调用都会把函数的局部变量、参数值和返回地址等压入调用栈中 ,然后递归返回的时候,从栈顶弹出上

    2024年02月02日
    浏览(37)
  • 力扣刷题-二叉树-合并二叉树

    合并二叉树是操作两棵树的题目里面很经典的,如何对两棵树遍历以及处理? 给定两个二叉树,想象当你将它们中的一个覆盖到另一个上时,两个二叉树的一些节点便会重叠。 你需要将他们合并为一个新的二叉树。合并的规则是如果两个节点重叠,那么将他们的值相加作为

    2024年01月17日
    浏览(45)
  • 【LeetCode题目详解】第八章 贪心算法 part06 738.单调递增的数字 968.监控二叉树 (day37补)

    当且仅当每个相邻位数上的数字  x  和  y  满足  x = y  时,我们称这个整数是 单调递增 的。 给定一个整数 n ,返回 小于或等于 n 的最大数字,且数字呈 单调递增 。 示例 1: 示例 2: 示例 3: 提示: 0 = n = 109 # 暴力解法 题意很简单,那么首先想的就是暴力解法了,来我替大家

    2024年02月10日
    浏览(41)
  • 二叉树经典题题解(超全题目)(力扣)

        ✨欢迎来到脑子不好的小菜鸟的文章✨       🎈创作不易,麻烦点点赞哦🎈           所属专栏:刷题             我的主页:脑子不好的小菜鸟           文章特点:关键点和步骤讲解放在           代码相应位置 目录 144. 二叉树的前序遍历 145. 二叉树的后序遍

    2024年04月13日
    浏览(37)
  • 【二叉树复习】C++ 二叉树复习及题目解析 (1)

    目录 二叉树 树 相关概念 树的表示 二叉树 概念 存储结构 小练习 树题目: leetcode 965 单值二叉树。 leetcode 103. 二叉树的最大深度 leetcode 226 翻转二叉树 leetcode100 相同的树 leetcode 101 对称二叉树 leetcode 144前序遍历 94 中序遍历 145 后序遍历 leetcode 572 另一棵树的子树 本文将从二

    2024年02月12日
    浏览(34)
  • 二叉树题目合集(C++)

    链接: 二叉树创建字符串 题目要求: PS :题目描述的不是特别清楚,其实就是 前序遍历 树,然后 用括号分别包含左子树和右子树遍历结果 。 基础思路: (1)不考虑括号去重 的话,其实只要 访问完当前节点后递归访问左右子树 即可,并且在访问前加左括号,访问完毕后

    2024年02月07日
    浏览(31)
  • 二叉树经典算法题目

    省略 输入一棵二叉树的根节点,求该树的深度。从根节点到叶节点依次经过的节点(含根、叶节点)形成树的一条路径,最长路径的长度为树的深度。 例如: 给定二叉树 [3,9,20,null,null,15,7] , 返回它的最大深度 3 。 思路:递归,当前数的深度等于左子数和右子树其中最大深

    2024年02月09日
    浏览(57)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包