【算法与数据结构】494、LeetCode目标和

这篇具有很好参考价值的文章主要介绍了【算法与数据结构】494、LeetCode目标和。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。

一、题目

【算法与数据结构】494、LeetCode目标和,算法,算法

二、解法

  思路分析:本题和这道题【算法与数据结构】1049、LeetCode 最后一块石头的重量 II类似,同样可以转换成01背包问题。下面开始论述。假设添加正号的整数子集和为 p o s i t i v e positive positive,添加负号的整数子集和为 n e g a t i v e negative negative那么我们有 p o s i t i v e − n e g a t i v e = t a r g e t , p o s i t i v e + n e g a t i v e = s u m positive - negative=target, positive + negative = sum positivenegative=target,positive+negative=sum。因此 p o s i t i v e = ( t a r g e t + s u m ) / 2 positive = (target + sum)/2 positive=(target+sum)/2,其中 s u m sum sum代表nums的和。找到了和为 p o s i t i v e positive positive的子集就找到了 n e g a t i v e negative negative。因此,问题变成了寻找和为 p o s i t i v e positive positive的子集数量。寻找和为 p o s i t i v e positive positive的子集是一个01背包问题。其中, p o s i t i v e positive positive是背包的容量,物品及其价值是 n u m s nums nums数组。 d p [ j ] dp[j] dp[j]代表填满 j j j(包括 j j j)这么大容积的包,有 d p [ j ] dp[j] dp[j]种方法。递归公式可以由 d p [ j − n u m s [ i ] ] dp[j-nums[i]] dp[jnums[i]]得出,例如只要有 n u m s [ i ] nums[i] nums[i],那么弄成 d p [ j ] dp[j] dp[j]的方法就有 d p [ j − n u m s [ i ] ] dp[j-nums[i]] dp[jnums[i]]中,并且根据 n u m s [ i ] nums[i] nums[i]的不同会有不同的方法,所以 d p [ j ] dp[j] dp[j]应该采取累加的形式。然后 d p [ 0 ] dp[0] dp[0]应该初始化为1(为0的话所有的 d p [ j ] dp[j] dp[j]都是0)。

  程序如下

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        if ((target + sum) % 2 != 0 || abs(target) > sum) return 0;
        int positive = (target + sum) / 2;
        vector<int> dp(vector<int>(positive + 1, 0));
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {			// 遍历物品
            for (int j = positive; j >= nums[i]; j--) {			// 遍历背包容量
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[positive];
    }
};

复杂度分析:

  • 时间复杂度: O ( m ∗ n ) O(m*n) O(mn), n为nums数组大小,m为背包容量。
  • 空间复杂度: O ( m ) O(m) O(m)

三、完整代码

# include <iostream>
# include <vector>
# include <numeric>
using namespace std;

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = accumulate(nums.begin(), nums.end(), 0);
        if ((target + sum) % 2 != 0 || abs(target) > sum) return 0;
        int positive = (target + sum) / 2;
        vector<int> dp(vector<int>(positive + 1, 0));
        dp[0] = 1;
        for (int i = 0; i < nums.size(); i++) {			// 遍历物品
            for (int j = positive; j >= nums[i]; j--) {			// 遍历背包容量
                dp[j] += dp[j - nums[i]];
            }
        }
        return dp[positive];
    }
};

int main() {
    Solution s1;
    vector<int> nums = { 1,1,1,1,1 };
    int target = 3;
    int result = s1.findTargetSumWays(nums, target);
    cout << result << endl;
    system("pause");
    return 0;
}

end文章来源地址https://www.toymoban.com/news/detail-809257.html

到了这里,关于【算法与数据结构】494、LeetCode目标和的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【LeetCode】494. 目标和

    首先,将这道题想成 0-1背包问题 ,我们最终要输出的结果是最多的方法数,因此 dp 数组需要记录具体的方法数。 状态定义 按照 0-1 背包问题的套路,我们将状态定义为 : dp[i][j] ,表示「前 i 个数字,和等于 j 的情况下,能够达到的不同表达式的最大数目」。 状态转移方程

    2024年02月03日
    浏览(32)
  • leetcode:494.目标和

    解题思路:1.因为每个数字都有正负两种选择,所以可以采用回溯算法。(会超时) 2.分成两个集合,分别为正数集合(left)和负数(right)集合。 left + right = Sum --- right = Sum - left left - right = target 联立得到: left = (target + Sum) /  2 如果不能整除,则凑不出target dp数组含义:装

    2024年02月22日
    浏览(31)
  • 动态规划 Leetcode 494 目标和

    Leetcode 494 学习记录自代码随想录 要点:1.想到±代表其实求的是连个组合的差值,进而记left为正组合,right为负组合,则有 { l e f t − r i g h t = t a r g e t l e f t + r i g h t = s u m left { begin{matrix} left-right=target \\\\ left+right=sum end{matrix} right . { l e f t − r i g h t = t a r g e t l e f t + r

    2024年04月09日
    浏览(59)
  • 【算法与数据结构】474、LeetCode一和零

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题要找strs数组的最大子集,这个子集最多含有 m m m 个0和 n n n 个1。本题也可以抽象成一个01背包的问题。其中,strs内的元素就是物品,而 m m m 和 n n n 就是背包的维度。 d p [

    2024年01月22日
    浏览(40)
  • 【算法与数据结构】62、LeetCode不同路径

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :机器人只能向下或者向右移动,那么到达(i,j)位置的路径和(i-1,j)以及(i,j-1)有关。那么我们就得到的动态规划的表达式 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i ] [ j − 1 ] dp[i][

    2024年01月18日
    浏览(65)
  • 【算法与数据结构】343、LeetCode整数拆分

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :博主做这道题的时候一直在思考,如何找到 k k k 个正整数, k k k 究竟为多少合适。从数学的逻辑上来说,将 n n n 均分为 k k k 个数之后, k k k 个数的乘积为最大(类似于相同周长

    2024年01月17日
    浏览(51)
  • 数据结构算法leetcode刷题练习(1)

    给定一个三角形 triangle ,找出自顶向下的最小路径和。 每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标 与 上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标

    2023年04月24日
    浏览(50)
  • 【算法与数据结构】112、LeetCode路径总和

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题通过计算根节点到叶子节点路径上节点的值之和,然后再对比目标值。利用文章【算法和数据结构】257、LeetCode二叉树的所有路径中的递归算法。 这里要注意,默认路径之和是

    2024年02月11日
    浏览(51)
  • 【python与数据结构】(leetcode算法预备知识)

    笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~ 1.数字类型: 整数(int):表示整数值,例如 1、-5、100。 浮点数(float):表示带有小数部分的数字,例如 3.14、-0.5、2.0。 复数(complex):表示实部和虚部的复数,例如 2+3j。 2.布尔类型(bool): 表示真(True)或假(

    2024年02月08日
    浏览(38)
  • 【算法与数据结构】377、LeetCode组合总和 Ⅳ

    所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。    思路分析 :本题明面上说是组合,实际上指的是排列。动态规划排列组合背包问题需要考虑遍历顺序。 d p [ i ] dp[i] d p [ i ] 指的是nums数组中总和为target的元素排列的个数。 d p [ i ] dp[i] d p [

    2024年01月23日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包