基于OpenCV的谷物颗粒识别

这篇具有很好参考价值的文章主要介绍了基于OpenCV的谷物颗粒识别。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

一、程序整体功能介绍

1.1 导入库与函数定义

这个程序旨在通过图像处理技术实现对颗粒的计数。主要运用了计算机视觉库OpenCV以及数值计算库NumPy,通过颜色分割、灰度处理、二值化、轮廓检测等步骤,最终达到统计颗粒数量的目的。
首先,在程序的开头导入了必要的库,包括OpenCV用于图像处理,NumPy用于数组操作,以及Scikit-learn中的KMeans聚类算法,尽管在当前代码中并没有使用到KMeans算法,但可能为后续功能扩展保留了接口。
接下来定义一个名为grain_count的函数,该函数接受一个图像路径作为输入。在函数内部,首先使用OpenCV的imread函数读取了输入的图像。这一步是程序的起点,将图像加载到内存中以便后续处理。

1.2 颜色分割与灰度处理

接下来,程序进行了颜色分割的操作。通过将图像从BGR色彩空间转换为HSV色彩空间,程序能够更方便地选择特定颜色范围。通过设定HSV的上下阈值,程序创建了一个二值掩模,该掩模用于提取图像中特定颜色范围的像素。通过将这个掩模应用于原始图像,程序获得了一个仅包含感兴趣颜色的结果图像。程序对结果图像进行灰度处理,将其转换为单通道的灰度图像。这有助于简化图像,使得后续的处理步骤更为高效。

1.3 二值化与轮廓检测

程序进行二值化处理,将灰度图像转换为二值图像。通过设定一个阈值,像素的亮度高于阈值的被置为白色,低于阈值的被置为黑色。这一步骤是为了进一步简化图像,突出颗粒的轮廓。
然后,程序使用OpenCV的findContours函数来检测二值图像中的轮廓。这些轮廓代表了颗粒的形状,但在这一步中,并未对轮廓的大小进行过滤。接着,程序创建了一个全黑的图像,用于绘制筛选后的轮廓。

1.4 绘制与计数

在绘制轮廓的同时,程序通过计算轮廓的面积,对轮廓进行了过滤。只有当轮廓的面积大于50时,程序才将其计数,并在黑色图像上绘制相应的轮廓。这个阈值的选择是为了过滤掉一些噪声,确保只有较大的轮廓被计数,从而得到准确的颗粒数量。
最后,程序通过OpenCV展示了包含绘制轮廓的图像,等待用户按键后关闭窗口。函数返回被计数的颗粒数量。

1.5 主程序与结果展示

在主程序中,通过指定一个图像路径,调用了grain_count函数,并打印出了颗粒的数量。需要注意的是,代码中硬编码的期望颗粒数量(可能需要根据实际图像的特征进行调整。

总体而言,这个程序通过图像处理技术实现了对颗粒数量的计数,逐步进行颜色分割、灰度处理、二值化和轮廓检测等关键步骤,最终得到了准确的颗粒数量,并展示在了图像上。在实际应用中,用户只需替换图像路径,即可快速得到不同图像中颗粒的数量统计结果。

二、算法原理与实现流程

2.1算法原理

(1)颜色分割

颜色分割是图像处理中的一种常见技术,用于从图像中提取特定颜色范围的对象。在这个程序中,首先将图像从BGR色彩空间转换为HSV色彩空间。HSV表示图像的颜色信息更为直观,包括色相(Hue)、饱和度(Saturation)和亮度(Value)。通过设置在HSV空间中的颜色范围,程序创建了一个二值掩模,该掩模将位于指定颜色范围内的像素设为白色,而其他像素设为黑色。这一步骤的目的是提取出感兴趣颜色的部分,即颗粒的颜色。

(2)灰度处理与二值化

颜色分割后的图像通常仍然是一个多通道图像,为了简化后续处理,将其转换为灰度图像。灰度图像只有一个通道,表示图像的亮度信息。接着,通过设定一个阈值,将亮度高于阈值的像素置为白色,低于阈值的像素置为黑色,得到了二值图像。这一步的作用是突出颗粒的轮廓,方便后续的轮廓检测。

(3)轮廓检测与过滤

使用OpenCV的findContours函数来检测二值图像中的轮廓。每个轮廓是一系列相邻的像素点,代表了颗粒的形状。在这一步,程序检测到了所有的轮廓,而后通过计算轮廓的面积,过滤掉了面积较小的轮廓。过滤的目的是去除一些噪声或过小的区域,确保只有颗粒较大的轮廓被计数。

(4)绘制轮廓与计数

接下来,程序创建了一个全黑的图像,用于绘制筛选后的轮廓。通过遍历筛选后的轮廓,并通过drawContours函数在黑色图像上绘制,这一步将有助于可视化并进一步确认颗粒的位置。在绘制轮廓的同时,程序计数了有效的颗粒数量,即满足过滤条件的颗粒。

2.2实现流程

(1)图像加载与颜色分割

首先,使用OpenCV的imread函数加载输入的图像。随后,将图像从BGR色彩空间转换为HSV色彩空间,通过设定阈值范围,创建一个二值掩模,将图像中的感兴趣颜色提取出来。

(2)灰度处理与二值化

将颜色分割后的图像转换为灰度图像,简化后续处理。然后,通过设定阈值,将灰度图像转换为二值图像,突出颗粒的轮廓。

(3)轮廓检测与过滤

使用OpenCV的findContours函数检测二值图像中的轮廓。通过计算轮廓的面积,过滤掉面积较小的轮廓,以排除噪声。

(4)绘制轮廓与计数

创建一个全黑的图像,用于绘制筛选后的轮廓。遍历轮廓,绘制在黑色图像上,并计数有效的颗粒数量。

(5)结果展示

使用OpenCV展示包含绘制轮廓的图像,等待用户按键后关闭窗口。函数返回被计数的颗粒数量。

(6)主程序调用

在主程序中指定图像路径,调用grain_count函数,获取颗粒数量并打印。用户只需替换图像路径,即可快速得到不同图像中颗粒的数量统计结果。
整个实现流程通过图像处理的一系列步骤,从颜色分割到最终的轮廓计数,逐步提取并筛选出图像中的颗粒信息,最终得到准确的颗粒数量统计结果。

三、程序运行界面及结果分析

3.1程序运行界面

基于OpenCV的谷物颗粒识别,课程设计,opencv,人工智能,计算机视觉

图 1 颗粒图像
基于OpenCV的谷物颗粒识别,课程设计,opencv,人工智能,计算机视觉
图 2 图像处理结果

基于OpenCV的谷物颗粒识别,课程设计,opencv,人工智能,计算机视觉

图 3 计数结果

3.2结果分析

使用该颗粒计数程序对一张具有18颗谷物的图片进行计数并输出正确结果,表明程序在特定场景下取得了良好的效果。

(1)程序参数调整

通过使用该程序成功对一张图片中的18颗谷物进行计数,说明在这个特定场景下,程序的颜色分割、灰度处理、二值化等预处理步骤的参数设置较为合适。程序通过适当的参数选择,能够有效地区分出图像中的颗粒,而且过滤掉了可能的噪声。

(2)图像特性适配

成功的计数结果表明该程序对于一般的颗粒图像场景具有较好的适应性。程序通过检测轮廓并过滤,能够较好地应对不同颗粒大小和形状的情况,同时通过面积阈值的设定,有力地抑制了噪声对计数结果的干扰。

(3)计数结果准确性

输出的正确计数结果表明程序在对颗粒进行计数时具有较高的准确性。通过过滤掉面积较小的轮廓,程序成功排除了图像中的噪声,确保了计数结果的可靠性。程序的计数结果与实际图像中的颗粒数量一致,验证了其在此类任务上的有效性。

(4)用户友好性

程序通过在结果图像上绘制颗粒轮廓,以及直接输出颗粒数量,提供了用户友好的界面,使用户能够直观地了解计数结果。这种可视化的展示方式有助于用户对计数结果的直观理解,提高了程序的易用性。

(5)结果的复现性

由于程序对于特定场景的适应性较好,具有一定的鲁棒性和通用性,因此在不同的含有颗粒的图像上也可能取得类似的良好效果。用户在实际使用中,可以尝试将程序应用到其他颗粒图像中,观察其在不同场景下的表现。

(6)进一步优化的可能性

虽然程序在该场景下取得了正确的计数结果,但仍有可能通过进一步的参数调整和优化来提升程序的性能。例如,根据实际情况调整颜色范围、阈值等参数,或者考虑使用更复杂的图像处理算法,以适应更广泛的场景。

综合而言,程序在对一张具有18颗谷物的图片进行颗粒计数时取得了成功的结果,验证了其在特定场景下的有效性和准确性。这也为程序在其他颗粒图像中的应用提供了一定的信心。用户在使用程序时应关注实际图像的特性,可能需要进行一些参数的微调以适应不同的场景。文章来源地址https://www.toymoban.com/news/detail-809298.html

四、程序设计

import cv2
import numpy as np
from sklearn.cluster import KMeans

def grain_count(image_path):
    # 读取图像
    image = cv2.imread(image_path)

    # 颜色分割
    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
    lower_color = np.array([20, 50, 50])
    upper_color = np.array([30, 255, 255])
    mask = cv2.inRange(hsv, lower_color, upper_color)
    result = cv2.bitwise_and(image, image, mask=mask)

    # 灰度化
    gray = cv2.cvtColor(result, cv2.COLOR_BGR2GRAY)

    # 二值化
    _, thresh = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY)

    # 查找轮廓
    _, contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # 创建一个黑色图像
    black_image = np.zeros_like(image)

    # 绘制轮廓并计数
    count = 0
    for contour in contours:
        area = cv2.contourArea(contour)
        if area > 50:  # 过滤掉面积较小的轮廓,以排除噪声
            count += 1
            cv2.drawContours(black_image, [contour], -1, (0, 255, 0), 2)

    # 显示结果
    cv2.imshow("Contours", black_image)
    cv2.waitKey(0)
    cv2.destroyAllWindows()

    return count

if __name__ == "__main__":
    image_path = "grains.jpeg"  # 替换为实际图像路径
    count = grain_count(image_path)
    print(f"Number of grains: ",count)

到了这里,关于基于OpenCV的谷物颗粒识别的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 基于OpenCv和tensorflow的人脸识别设计与实现

    项目名称: 基于OpenCv和tensorflow的人脸识别 项目地址:https://gitee.com/yq233/opencv 环境配置: Python tensorflow2 OpenCv categories: 人工智能 description: Opencv是一个开源的的跨平台计算机视觉库,内部实现了图像处理和计算机视觉方面的很多通用算法,对于python而言,在引用opencv库的时候需要

    2024年02月03日
    浏览(48)
  • 毕业设计-基于深度学习的交通标识识别-opencv

    目录 前言 课题背景和意义 实现技术思路 实现效果图样例     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年各个学校要求的毕设项目越来越难,有不少课题是研究生级别难度的,对本科同学

    2024年02月02日
    浏览(55)
  • 毕业设计-基于机器视觉的手势识别系统-OPENCV

    目录 前言 课题背景和意义 实现技术思路 一、系统总体设计 二、手势区域特征提取 三、系统设计与实现 四、总结 实现效果图样例 最后     📅大四是整个大学期间最忙碌的时光,一边要忙着备考或实习为毕业后面临的就业升学做准备,一边要为毕业设计耗费大量精力。近几年

    2024年02月08日
    浏览(64)
  • 基于opencv的车牌识别系统(UI界面采用tkinter设计)

    本系统采用python语言搭配opencv进行开发,在传统的车牌识别项目上进行改进,开发独特的GUI界面,方便使用者的使用。 需要源码的朋友点赞、关注我、再私信我获取源码,如果未能及时回复可以留下邮箱耐心等待奥 先上运行截图(下图分别为图片识别和摄像头识别结果) 项

    2023年04月23日
    浏览(51)
  • 基于opencv和python的人脸识别签到系统设计与实现

    收藏和点赞,您的关注是我创作的动力   人脸识别广泛的应用于各个领域。一般来说,人脸具有人类基因、指纹等独特的生物学特性,因此可以作为生物特征识别,从而方便、快速、准确地识别被摄体,可见人脸识别是一种有效的身份识别工具。该技术可以应用于任何需要

    2024年02月04日
    浏览(46)
  • 毕业设计——基于OpenCV的视频人脸识别检测系统的设计与实现

    如需完整源码,可以联系博主获取 本系统基于OpenCV使用Haar级联与dlib库进行人脸检测及实时跟踪,应用LBPH算法开发了一个功能相对完整的人脸识别系统。系统采用sqlite3进行序列化数据存储,能够对陌生人脸闯入进行报警,并拥有基于PyQt5设计的GUI实现。 一、引言 随着计算机

    2024年04月12日
    浏览(49)
  • 基于 opencv 的人脸识别上课考勤系统,附源码,可作为毕业设计

    这个人脸识别考勤签到系统是基于大佬的人脸识别陌生人报警系统二次开发的。 项目使用Python实现,基于OpenCV框架进行人脸识别和摄像头硬件调用,同时也用OpenCV工具包处理图片。交互界面使用pyqt5实现。 该系统实现了从学生信息输入、人脸数据录入、人脸数据训练,学生信

    2024年02月08日
    浏览(66)
  • Python 毕业设计 - 基于 opencv 的人脸识别上课考勤系统,附源码

    源码下载地址https://download.csdn.net/download/2302_77835532/88237252 这个人脸识别考勤签到系统是基于大佬的人脸识别陌生人报警系统二次开发的。 项目使用Python实现,基于OpenCV框架进行人脸识别和摄像头硬件调用,同时也用OpenCV工具包处理图片。交互界面使用pyqt5实现。 该系统实现

    2024年02月05日
    浏览(67)
  • 人工智能-OpenCV+Python实现人脸识别(人脸检测)

    在OpenCV中使用Haar特征检测人脸,那么需要使用OpenCV提供的xml文件(级联表)在haarcascades目录下。这张级联表有一个训练好的AdaBoost训练集。首先要采用样本的Haar特征训练分类器,从而得到一个级联的AdaBoost分类器。Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征

    2024年02月06日
    浏览(99)
  • 计算机毕业设计:基于python人脸识别考勤系统 OpenCV+Dlib(包含文档+源码+部署教程)

    [毕业设计]2023-2024年最新最全计算机专业毕设选题推荐汇总 感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人 。 Python语言、dlib、OpenCV、Pyqt5界面设计、sqlite3数据库 方法实现、实现步骤 1、实例化人脸检测

    2024年02月04日
    浏览(61)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包