Flink处理函数(3)—— 窗口处理函数

这篇具有很好参考价值的文章主要介绍了Flink处理函数(3)—— 窗口处理函数。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

窗口处理函数包括:ProcessWindowFunction 和 ProcessAllWindowFunction

基础用法
stream.keyBy( t -> t.f0 )
 .window( TumblingEventTimeWindows.of(Time.seconds(10)) )
 .process(new MyProcessWindowFunction())

这里的MyProcessWindowFunction就是ProcessWindowFunction的一个实现类;

ProcessWindowFunction是一个典型的全窗口函数,把数据全部收集保存在窗口内,等到触发窗口计算时再统一处理

源码解析
public abstract class ProcessWindowFunction<IN, OUT, KEY, W extends Window>
        extends AbstractRichFunction {

    private static final long serialVersionUID = 1L;

    /**
     * Evaluates the window and outputs none or several elements.
     *
     * @param key The key for which this window is evaluated.
     * @param context The context in which the window is being evaluated.
     * @param elements The elements in the window being evaluated.
     * @param out A collector for emitting elements.
     * @throws Exception The function may throw exceptions to fail the program and trigger recovery.
     */
    public abstract void process(
            KEY key, Context context, Iterable<IN> elements, Collector<OUT> out) throws Exception;

    /**
     * Deletes any state in the {@code Context} when the Window expires (the watermark passes its
     * {@code maxTimestamp} + {@code allowedLateness}).
     *
     * @param context The context to which the window is being evaluated
     * @throws Exception The function may throw exceptions to fail the program and trigger recovery.
     */
    public void clear(Context context) throws Exception {}

    /** The context holding window metadata. */
    public abstract class Context implements java.io.Serializable {
        /** Returns the window that is being evaluated. */
        public abstract W window();

        /** Returns the current processing time. */
        public abstract long currentProcessingTime();

        /** Returns the current event-time watermark. */
        public abstract long currentWatermark();

        /**
         * State accessor for per-key and per-window state.
         *
         * <p><b>NOTE:</b>If you use per-window state you have to ensure that you clean it up by
         * implementing {@link ProcessWindowFunction#clear(Context)}.
         */
        public abstract KeyedStateStore windowState();

        /** State accessor for per-key global state. */
        public abstract KeyedStateStore globalState();

        /**
         * Emits a record to the side output identified by the {@link OutputTag}.
         *
         * @param outputTag the {@code OutputTag} that identifies the side output to emit to.
         * @param value The record to emit.
         */
        public abstract <X> void output(OutputTag<X> outputTag, X value);
    }
}

类型参数如下:

  • IN:input,数据流中窗口任务的输入数据类型
  • OUT:output,窗口任务进行计算之后的输出数据类型
  • KEY:数据中键 key 的类型
  • W:窗口的类型,是 Window 的子类型。一般情况下我们定义时间窗口,W就是 TimeWindow

定义方法如下:

process(窗口处理函数不是逐个处理数据)

  • key:窗口做统计计算基于的键,也就是之前 keyBy 用来分区的字段
  • context:当前窗口进行计算的上下文
  • elements:窗口收集到用来计算的所有数据,这是一个可迭代的集合类型
  • out:用来发送数据输出计算结果的收集器,类型为 Collector

可以明显看出,这里的参数不再是一个输入数据,而是窗口中所有数据的集合。而上下文context 所包含的内容也跟其他处理函数有所差别:

Flink处理函数(3)—— 窗口处理函数,Flink,大数据,flink,大数据,学习,笔记

①不再提供设置定时器的方法

②由于当前不是只处理一个数据,所以也不再提供.timestamp()方法

③可以通过.window()直接获取到当前的窗口对象

④可以通过.windowState().globalState()获取到当前自定义的窗口状态和全局状态

clear()

进行窗口的清理工作:如果我们自定义了窗口状态,那么必须在.clear()方法中进行显式地清除,避免内存溢出

学习课程链接:【尚硅谷】Flink1.13实战教程(涵盖所有flink-Java知识点)_哔哩哔哩_bilibili 文章来源地址https://www.toymoban.com/news/detail-809519.html

到了这里,关于Flink处理函数(3)—— 窗口处理函数的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Flink学习-处理函数

    处理函数是Flink底层的函数,工作中通常用来做一些更复杂的业务处理,处理函数分好几种,主要包括基本处理函数,keyed处理函数,window处理函数。 Flink提供了8种不同处理函数: ProcessFunction :dataStream KeyedProcessFunction :用于KeyedStream,keyBy之后的流处理 CoProcessFunction :用于

    2024年02月03日
    浏览(33)
  • Flink|《Flink 官方文档 - 概念透析 - 及时流处理》学习笔记

    学习文档:概念透析 - 及时流处理 学习笔记如下: 及时流处理时有状态流处理的扩展,其中时间在计算中起着一定的作用。 及时流的应用场景: 时间序列分析 基于特定时间段进行聚合 对发生时间很重要的事件进行处理 处理时间(processing time) 处理时间的即数据到达各个

    2024年02月03日
    浏览(50)
  • Flink学习——处理函数ProcessFunction及多流转换

            在DataStream的更底层,我们可以不定义任何具体的算子(如map(),filter()等)二只提炼出一个统一的“处理”(process)操作 。它是所有转换算子的概括性的表达。可以自定义处理逻辑。         所以这一层接口就被叫做“ 处理函数 ”( process function )         处理

    2024年02月14日
    浏览(46)
  • flink 窗口函数

    时间语义 事件像水流一样到来,经过pipline进行处理,为了划定窗口进行计算,需要以时间作为标准,也就是流中元素事件的先后以及间隔描述。 flink是一个分布式系统,如何让所有机器保证时间的完全同步呢。比如上游任务8点59分59秒发送了消息,到达下游时是9点零1秒,那

    2024年02月01日
    浏览(79)
  • Flink窗口函数

    Flink窗口函数是指对数据流中的数据进行分组和聚合操作的函数。 FlinkSQL支持对一个特定的窗口的聚合。例如有用户想统计在过去的1分钟内有多少用户点击了某个的网页。在这种情况下,我们可以定义一个窗口,用来收集最近一分钟内的数据,并对这个窗口内的数据进行计算

    2023年04月24日
    浏览(62)
  • [实时流基础 flink] 窗口函数

    尚硅谷学习笔记 增量聚合函数(ReduceFunction / AggregateFunction) 窗口将数据收集起来,最基本的处理操作当然就是进行聚合。我们可以每来一个数据就在之前结果上聚合一次,这就是“增量聚合”。 典型的增量聚合函数有两个:ReduceFunction和AggregateFunction。 ReduceFunction可以解决

    2024年04月12日
    浏览(34)
  • 【API篇】八、Flink窗口函数

    上一节的窗口分配器,指明了窗口类型,知道了数据属于哪个窗口并收集。而窗口函数,则是定义如何对这些数据做计算操作。 增量聚合 : 来一条数据,计算一条数据 ,窗口触发的时候输出计算结果 全窗口函数 : 数据来了不计算,存起来 ,窗口触发的时候,计算并输出

    2024年02月08日
    浏览(43)
  • Flink--8、时间语义、水位线(事件和窗口、水位线和窗口的工作原理、生产水位线、水位线的传递、迟到数据的处理)

                           星光下的赶路人star的个人主页                        将自己生命力展开的人,他的存在,对别人就是愈疗 1、从《星球大战》说起 为了更加清晰地说明两种语义的区别,我们来举一个非常经典的例

    2024年02月07日
    浏览(47)
  • Flink 学习六 Flink 窗口计算API

    窗口 window 是处理无限流的核心就是把无界的数据流,按照一定的规则划分成一段一段的有界的数据流(桶),然后再这个有界的数据流里面去做计算; 2.1 滚动窗口 相邻窗口之间是没有数据重合 window 大小可以是时间,可以是数据长度 按照数据流是否可以是 keyed , 在分类,nonkey windo

    2024年02月09日
    浏览(46)
  • 【大数据】Flink学习笔记

    核心目标: 数据流上有状态的计算 Stateful computation over data stream Flink: 一个 框架 和 分布式处理引擎 , 对有界和无界的数据流进行有状态计算 Flink是事件驱动型的应用 有界数据流: 有定义流的开始, 但没有定义流的结束; 而有界数据流即有流的开始, 也有结束 状态: 把流处理需要

    2024年04月13日
    浏览(50)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包