GEE机器学习——利用最短距离方法进行土地分类和精度评定

这篇具有很好参考价值的文章主要介绍了GEE机器学习——利用最短距离方法进行土地分类和精度评定。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

最短距离方法

最短距离方法(Minimum Distance)是一种常用的模式识别算法,用于计算样本之间的相似度或距离。该方法通过计算样本之间的欧氏距离或其他距离度量,来确定样本之间的相似程度或差异程度。

最短距离方法的具体步骤如下:
1. 数据准备:收集并准备用于训练的数据集,确保数据集包含标记好的样本点。
2. 特征选择:根据问题的特点选择合适的特征,并对特征进行预处理(如归一化、标准化等)。
3. 计算距离:使用合适的距离度量方法(如欧氏距离、曼哈顿距离等),计算待分类样本与训练集中每个样本之间的距离。
4. 分类决策:根据最小距离原则,将待分类样本分配给与其距离最近的训练集样本所属的类别。
5. 模型评估:使用测试数据集评估模型的性能,通常使用准确率、精确率、召回率等指标进行评估。

最短距离方法的优点是简单直观,易于理解和实现。然而,它也存在一些缺点:
- 对于高维数据或特征空间中的非线性关系,最短距离方法可能表现不佳。
- 在处理不平衡数据集时,最短距离方法可能偏向于多数类别。

因此,在实际应用中,需要根据具体问题和数据特点选择合适的分类算法。

metric 字符串,默认:“euclidean” 要使用的距离度量。选项有: 'euclidean' - 与非标准化类平均值的欧几里德距离。'cosine' - 来自非归一化类平均值的光谱角度。'mahalanobis' - 与类平均值的马哈拉诺比斯距离。'manhattan' - 曼哈顿与非标准化类别平均值的距离。
kNearest 整数,默认:1 如果大于 1,结果将包含 k 个最近邻或距离的数组,具体取决于输出模式设置。如果 kNearest 大于类总数,则将其设置为等于类数。

函数

ee.Classifier.minimumDistance(metric, kNearest)

Creates a minimum distance classifier for the given distance metric. In CLASSIFICATION mode, the nearest class is returned. In 文章来源地址https://www.toymoban.com/news/detail-809734.html

到了这里,关于GEE机器学习——利用最短距离方法进行土地分类和精度评定的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 空间分析实战指南:点到多边形的最短距离

    在我们最近的项目中,出现了一个新的需求:需要验证现场拍摄的照片的经纬度与实际地块之间的最短距离,以确保业务员在地块的一公里范围内进行拍照。 实现这个功能有两种方式,一种是在前台APP中校验,一种是在后台进行校验,接下来我会分别介绍这两种方式。 在我

    2024年02月13日
    浏览(37)
  • 力扣(leetcode)第821题字符的最短距离(Python)

    题目链接:821.字符的最短距离 给你一个字符串 s 和一个字符 c ,且 c 是 s 中出现过的字符。 返回一个整数数组 answer ,其中 answer.length == s.length 且 answer[i] 是 s 中从下标 i 到离它 最近 的字符 c 的 距离 。 两个下标 i 和 j 之间的 距离 为 abs(i - j) ,其中 abs 是绝对值函数。 示

    2024年01月19日
    浏览(36)
  • 2023河南萌新联赛第(二)场:河南工业大学 F - 最短距离

    时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 262144K,其他语言524288K 64bit IO Format: %lld 题目描述 给定一棵包含 n n n 个顶点的树 T T T ,以及 m m m 个查询请求。每个查询包含三个参数 : x 、 y :x、y : x 、 y 和 k k k 。其中 x x x 和 y y y 是树中的两个顶点, k k k 是一个整数。对于

    2024年02月15日
    浏览(41)
  • 最短路径-任意两点间最短距离-Floyd算法的matlab实现(详细教程)

    目录 简介 核心思路 优缺点分析 算法过程          示例 Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德

    2024年02月05日
    浏览(40)
  • 利用机器学习,进行人体33个2D姿态检测与评估

    前几期的文章,我们分享了人脸468点检测与人手21点的代码实现过程,本期我们进行人体姿态的检测与评估 通过视频进行人体姿势估计在各种应用中起着至关重要的作用,例如量化体育锻炼,手语识别和全身手势控制,还可以在增强现实中将数字内容和信息覆盖在物理世界之

    2023年04月08日
    浏览(32)
  • 使用 ArcGIS Pro 进行土地利用分类的机器学习和深度学习

    随着技术进步,尤其是地理信息系统 (GIS) 工具的进步,可以更有效地对土地利用进行分类。分类的使用可用于识别植被覆盖变化、非法采矿区和植被抑制区域,这些只是土地利用分类的众多示例中的一部分。 分类的一大困难是确定要解决的问题的级别。我分类的目的是什么

    2023年04月25日
    浏览(48)
  • AI:154-利用机器学习进行电力系统故障检测与预测

    本文收录于专栏:精通AI实战千例专栏合集 从基础到实践,深入学习。无论你是初学者还是经验丰富的老手,对于本专栏案例和项目实践都有参考学习意义。 每一个案例都附带关键代码,详细讲解供大家学习,希望可以帮到大家。正在不断更新中~ 随着电力系统规模的不断扩

    2024年04月14日
    浏览(42)
  • 利用 Apache Spark 和 Databricks 进行企鹅种类预测的机器学习实践入门

    这里演示使用 Apache Spark 和 Databricks 平台进行企鹅物种预测的完整机器学习流程。首先,通过 Databricks 笔记本下载关于企鹅的特征数据,包括岛屿、喙的长度和深度、鳍状肢长度、体重和种类。然后进行数据清洗,包括删除缺失数据和数据类型转换。随后,数据被分为70%的训

    2024年01月19日
    浏览(40)
  • 【机器学习】决策树案例二:利用决策树进行鸢尾花数据集分类预测

    手动反爬虫,禁止转载: 原博地址 https://blog.csdn.net/lys_828/article/details/122045161(CSDN博主:Be_melting) 在进行逻辑回归分类的过程中已经有使用过iris数据集,这里直接加载数据,并进行字段名称的修改。 输出结果如下。 通过info()方法查看各个字段的基本详情,输出结果如下。

    2024年02月08日
    浏览(44)
  • GEE:机器学习分类中每个类别的概率图像可视化

    作者:CSDN @ _养乐多_ 在 Google Earth Engine(GEE) 中应用机器学习分类器进行多分类时,有一个需求是想知道每个像素对于每个类别的分类概率。 比如在进行随机森林分类时,每个决策树会生成一个类别,通过投票选择票数最多的类别作为最终分类。除了最终分类结果,其他类

    2024年01月17日
    浏览(40)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包