线性代数 | 机器学习数学基础

这篇具有很好参考价值的文章主要介绍了线性代数 | 机器学习数学基础。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

前言

线性代数(linear algebra)是关于向量空间和线性映射的一个数学分支。它包括对线、面和子空间的研究,同时也涉及到所有的向量空间的一般性质。

本文主要介绍机器学习中所用到的线性代数核心基础概念,供读者学习阶段查漏补缺或是快速学习参考

线性代数

行列式

1.行列式按行(列)展开定理

(1) 设 A = ( a i j ) n × n A = ( a_{{ij}} )_{n \times n} A=(aij)n×n,则: a i 1 A j 1 + a i 2 A j 2 + ⋯ + a i n A j n = { ∣ A ∣ , i = j 0 , i ≠ j a_{i1}A_{j1} +a_{i2}A_{j2} + \cdots + a_{{in}}A_{{jn}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases} ai1Aj1+ai2Aj2++ainAjn={A,i=j0,i=j

a 1 i A 1 j + a 2 i A 2 j + ⋯ + a n i A n j = { ∣ A ∣ , i = j 0 , i ≠ j a_{1i}A_{1j} + a_{2i}A_{2j} + \cdots + a_{{ni}}A_{{nj}} = \begin{cases}|A|,i=j\\ 0,i \neq j\end{cases} a1iA1j+a2iA2j++aniAnj={A,i=j0,i=j A A ∗ = A ∗ A = ∣ A ∣ E , AA^{*} = A^{*}A = \left| A \right|E, AA=AA=AE,其中: A ∗ = ( A 11 A 12 … A 1 n A 21 A 22 … A 2 n … … … … A n 1 A n 2 … A n n ) = ( A j i ) = ( A i j ) T A^{*} = \begin{pmatrix} A_{11} & A_{12} & \ldots & A_{1n} \\ A_{21} & A_{22} & \ldots & A_{2n} \\ \ldots & \ldots & \ldots & \ldots \\ A_{n1} & A_{n2} & \ldots & A_{{nn}} \\ \end{pmatrix} = (A_{{ji}}) = {(A_{{ij}})}^{T} A= A11A21An1A12A22An2A1nA2nAnn =(Aji)=(Aij)T

D n = ∣ 1 1 … 1 x 1 x 2 … x n … … … … x 1 n − 1 x 2 n − 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n   ( x i − x j ) D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n - 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j}) Dn= 1x1x1n11x2x2n11xnxnn1 =1j<in(xixj)

(2) 设 A , B A,B A,B n n n阶方阵,则 ∣ A B ∣ = ∣ A ∣ ∣ B ∣ = ∣ B ∣ ∣ A ∣ = ∣ B A ∣ \left| {AB} \right| = \left| A \right|\left| B \right| = \left| B \right|\left| A \right| = \left| {BA} \right| AB=AB=BA=BA,但 ∣ A ± B ∣ = ∣ A ∣ ± ∣ B ∣ \left| A \pm B \right| = \left| A \right| \pm \left| B \right| A±B=A±B不一定成立。

(3) ∣ k A ∣ = k n ∣ A ∣ \left| {kA} \right| = k^{n}\left| A \right| kA=knA, A A A n n n阶方阵。

(4) 设 A A A n n n阶方阵, ∣ A T ∣ = ∣ A ∣ ; ∣ A − 1 ∣ = ∣ A ∣ − 1 |A^{T}| = |A|;|A^{- 1}| = |A|^{- 1} AT=A;A1=A1(若 A A A可逆), ∣ A ∗ ∣ = ∣ A ∣ n − 1 |A^{*}| = |A|^{n - 1} A=An1

n ≥ 2 n \geq 2 n2

(5) ∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ \left| \begin{matrix} & {A\quad O} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad C} \\ & {O\quad B} \\ \end{matrix} \right| = \left| \begin{matrix} & {A\quad O} \\ & {C\quad B} \\ \end{matrix} \right| =| A||B| AOOB = ACOB = AOCB =A∣∣B
A , B A,B A,B为方阵,但 ∣ O A m × m B n × n O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \left| \begin{matrix} {O} & A_{m \times m} \\ B_{n \times n} & { O} \\ \end{matrix} \right| = ({- 1)}^{{mn}}|A||B| OBn×nAm×mO =(1)mnA∣∣B

(6) 范德蒙行列式 D n = ∣ 1 1 … 1 x 1 x 2 … x n … … … … x 1 n − 1 x 2 n 1 … x n n − 1 ∣ = ∏ 1 ≤ j < i ≤ n   ( x i − x j ) D_{n} = \begin{vmatrix} 1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n - 1} & x_{2}^{n 1} & \ldots & x_{n}^{n - 1} \\ \end{vmatrix} = \prod_{1 \leq j < i \leq n}^{}\,(x_{i} - x_{j}) Dn= 1x1x1n11x2x2n11xnxnn1 =1j<in(xixj)

A A A n n n阶方阵, λ i ( i = 1 , 2 ⋯   , n ) \lambda_{i}(i = 1,2\cdots,n) λi(i=1,2,n) A A A n n n个特征值,则
∣ A ∣ = ∏ i = 1 n λ i |A| = \prod_{i = 1}^{n}\lambda_{i} A=i=1nλi

矩阵

矩阵: m × n m \times n m×n个数 a i j a_{{ij}} aij排成 m m m n n n列的表格 [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ ⋯ a m 1 a m 2 ⋯ a m n ] \begin{bmatrix} a_{11}\quad a_{12}\quad\cdots\quad a_{1n} \\ a_{21}\quad a_{22}\quad\cdots\quad a_{2n} \\ \quad\cdots\cdots\cdots\cdots\cdots \\ a_{m1}\quad a_{m2}\quad\cdots\quad a_{{mn}} \\ \end{bmatrix} a11a12a1na21a22a2n⋯⋯⋯⋯⋯am1am2amn 称为矩阵,简记为 A A A,或者 ( a i j ) m × n \left( a_{{ij}} \right)_{m \times n} (aij)m×n 。若 m = n m = n m=n,则称 A A A n n n阶矩阵或 n n n阶方阵。

矩阵的线性运算

1.矩阵的加法

A = ( a i j ) , B = ( b i j ) A = (a_{{ij}}),B = (b_{{ij}}) A=(aij),B=(bij)是两个 m × n m \times n m×n矩阵,则 m × n m \times n m×n 矩阵 C = c i j ) = a i j + b i j C = c_{{ij}}) = a_{{ij}} + b_{{ij}} C=cij)=aij+bij称为矩阵 A A A B B B的和,记为 A + B = C A + B = C A+B=C

2.矩阵的数乘

A = ( a i j ) A = (a_{{ij}}) A=(aij) m × n m \times n m×n矩阵, k k k是一个常数,则 m × n m \times n m×n矩阵 ( k a i j ) (ka_{{ij}}) (kaij)称为数 k k k与矩阵 A A A的数乘,记为 k A {kA} kA

3.矩阵的乘法

A = ( a i j ) A = (a_{{ij}}) A=(aij) m × n m \times n m×n矩阵, B = ( b i j ) B = (b_{{ij}}) B=(bij) n × s n \times s n×s矩阵,那么 m × s m \times s m×s矩阵 C = ( c i j ) C = (c_{{ij}}) C=(cij),其中 c i j = a i 1 b 1 j + a i 2 b 2 j + ⋯ + a i n b n j = ∑ k = 1 n a i k b k j c_{{ij}} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{{in}}b_{{nj}} = \sum_{k =1}^{n}{a_{{ik}}b_{{kj}}} cij=ai1b1j+ai2b2j++ainbnj=k=1naikbkj称为 A B {AB} AB的乘积,记为 C = A B C = AB C=AB

4. A T \mathbf{A}^{\mathbf{T}} AT A − 1 \mathbf{A}^{\mathbf{-1}} A1 A ∗ \mathbf{A}^{\mathbf{*}} A三者之间的关系

(1) ( A T ) T = A , ( A B ) T = B T A T , ( k A ) T = k A T , ( A ± B ) T = A T ± B T {(A^{T})}^{T} = A,{(AB)}^{T} = B^{T}A^{T},{(kA)}^{T} = kA^{T},{(A \pm B)}^{T} = A^{T} \pm B^{T} (AT)T=A,(AB)T=BTAT,(kA)T=kAT,(A±B)T=AT±BT

(2) ( A − 1 ) − 1 = A , ( A B ) − 1 = B − 1 A − 1 , ( k A ) − 1 = 1 k A − 1 , \left( A^{- 1} \right)^{- 1} = A,\left( {AB} \right)^{- 1} = B^{- 1}A^{- 1},\left( {kA} \right)^{- 1} = \frac{1}{k}A^{- 1}, (A1)1=A,(AB)1=B1A1,(kA)1=k1A1,

( A ± B ) − 1 = A − 1 ± B − 1 {(A \pm B)}^{- 1} = A^{- 1} \pm B^{- 1} (A±B)1=A1±B1不一定成立。

(3) ( A ∗ ) ∗ = ∣ A ∣ n − 2   A    ( n ≥ 3 ) \left( A^{*} \right)^{*} = |A|^{n - 2}\ A\ \ (n \geq 3) (A)=An2 A  (n3) ( A B ) ∗ = B ∗ A ∗ , \left({AB} \right)^{*} = B^{*}A^{*}, (AB)=BA, ( k A ) ∗ = k n − 1 A ∗    ( n ≥ 2 ) \left( {kA} \right)^{*} = k^{n -1}A^{*}{\ \ }\left( n \geq 2 \right) (kA)=kn1A  (n2)

( A ± B ) ∗ = A ∗ ± B ∗ \left( A \pm B \right)^{*} = A^{*} \pm B^{*} (A±B)=A±B不一定成立。

(4) ( A − 1 ) T = ( A T ) − 1 ,   ( A − 1 ) ∗ = ( A A ∗ ) − 1 , ( A ∗ ) T = ( A T ) ∗ {(A^{- 1})}^{T} = {(A^{T})}^{- 1},\ \left( A^{- 1} \right)^{*} ={(AA^{*})}^{- 1},{(A^{*})}^{T} = \left( A^{T} \right)^{*} (A1)T=(AT)1, (A1)=(AA)1,(A)T=(AT)

5.有关 A ∗ \mathbf{A}^{\mathbf{*}} A的结论

(1) A A ∗ = A ∗ A = ∣ A ∣ E AA^{*} = A^{*}A = |A|E AA=AA=AE

(2) ∣ A ∗ ∣ = ∣ A ∣ n − 1   ( n ≥ 2 ) ,      ( k A ) ∗ = k n − 1 A ∗ ,    ( A ∗ ) ∗ = ∣ A ∣ n − 2 A ( n ≥ 3 ) |A^{*}| = |A|^{n - 1}\ (n \geq 2),\ \ \ \ {(kA)}^{*} = k^{n -1}A^{*},{{\ \ }\left( A^{*} \right)}^{*} = |A|^{n - 2}A(n \geq 3) A=An1 (n2),    (kA)=kn1A,  (A)=An2A(n3)

(3) 若 A A A可逆,则 A ∗ = ∣ A ∣ A − 1 , ( A ∗ ) ∗ = 1 ∣ A ∣ A A^{*} = |A|A^{- 1},{(A^{*})}^{*} = \frac{1}{|A|}A A=AA1,(A)=A1A

(4) 若 A A A n n n阶方阵,则:

r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1 r(A^*)=\begin{cases}n,\quad r(A)=n\\ 1,\quad r(A)=n-1\\ 0,\quad r(A)<n-1\end{cases} r(A)= n,r(A)=n1,r(A)=n10,r(A)<n1

6.有关 A − 1 \mathbf{A}^{\mathbf{- 1}} A1的结论

A A A可逆 ⇔ A B = E ; ⇔ ∣ A ∣ ≠ 0 ; ⇔ r ( A ) = n ; \Leftrightarrow AB = E; \Leftrightarrow |A| \neq 0; \Leftrightarrow r(A) = n; AB=E;A=0;r(A)=n;

⇔ A \Leftrightarrow A A可以表示为初等矩阵的乘积; ⇔ A ; ⇔ A x = 0 \Leftrightarrow A;\Leftrightarrow Ax = 0 A;Ax=0

7.有关矩阵秩的结论

(1) 秩 r ( A ) r(A) r(A)=行秩=列秩;

(2) r ( A m × n ) ≤ min ⁡ ( m , n ) ; r(A_{m \times n}) \leq \min(m,n); r(Am×n)min(m,n);

(3) A ≠ 0 ⇒ r ( A ) ≥ 1 A \neq 0 \Rightarrow r(A) \geq 1 A=0r(A)1

(4) r ( A ± B ) ≤ r ( A ) + r ( B ) ; r(A \pm B) \leq r(A) + r(B); r(A±B)r(A)+r(B);

(5) 初等变换不改变矩阵的秩

(6) r ( A ) + r ( B ) − n ≤ r ( A B ) ≤ min ⁡ ( r ( A ) , r ( B ) ) , r(A) + r(B) - n \leq r(AB) \leq \min(r(A),r(B)), r(A)+r(B)nr(AB)min(r(A),r(B)),特别若 A B = O AB = O AB=O
则: r ( A ) + r ( B ) ≤ n r(A) + r(B) \leq n r(A)+r(B)n

(7) 若 A − 1 A^{- 1} A1存在 ⇒ r ( A B ) = r ( B ) ; \Rightarrow r(AB) = r(B); r(AB)=r(B); B − 1 B^{- 1} B1存在
⇒ r ( A B ) = r ( A ) ; \Rightarrow r(AB) = r(A); r(AB)=r(A);

r ( A m × n ) = n ⇒ r ( A B ) = r ( B ) ; r(A_{m \times n}) = n \Rightarrow r(AB) = r(B); r(Am×n)=nr(AB)=r(B); r ( A m × s ) = n ⇒ r ( A B ) = r ( A ) r(A_{m \times s}) = n\Rightarrow r(AB) = r\left( A \right) r(Am×s)=nr(AB)=r(A)

(8) r ( A m × s ) = n ⇔ A x = 0 r(A_{m \times s}) = n \Leftrightarrow Ax = 0 r(Am×s)=nAx=0只有零解

8.分块求逆公式

( A O O B ) − 1 = ( A − 1 O O B − 1 ) \begin{pmatrix} A & O \\ O & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{-1} & O \\ O & B^{- 1} \\ \end{pmatrix} (AOOB)1=(A1OOB1) ( A C O B ) − 1 = ( A − 1 − A − 1 C B − 1 O B − 1 ) \begin{pmatrix} A & C \\ O & B \\\end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}& - A^{- 1}CB^{- 1} \\ O & B^{- 1} \\ \end{pmatrix} (AOCB)1=(A1OA1CB1B1)

( A O C B ) − 1 = ( A − 1 O − B − 1 C A − 1 B − 1 ) \begin{pmatrix} A & O \\ C & B \\ \end{pmatrix}^{- 1} = \begin{pmatrix} A^{- 1}&{O} \\ - B^{- 1}CA^{- 1} & B^{- 1} \\\end{pmatrix} (ACOB)1=(A1B1CA1OB1) ( O A B O ) − 1 = ( O B − 1 A − 1 O ) \begin{pmatrix} O & A \\ B & O \\ \end{pmatrix}^{- 1} =\begin{pmatrix} O & B^{- 1} \\ A^{- 1} & O \\ \end{pmatrix} (OBAO)1=(OA1B1O)

这里 A A A B B B均为可逆方阵。

向量

1.有关向量组的线性表示

(1) α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs线性相关 ⇔ \Leftrightarrow 至少有一个向量可以用其余向量线性表示。

(2) α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs线性无关, α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs β \beta β线性相关 ⇔ β \Leftrightarrow \beta β可以由 α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs唯一线性表示。

(3) β \beta β可以由 α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs线性表示
⇔ r ( α 1 , α 2 , ⋯   , α s ) = r ( α 1 , α 2 , ⋯   , α s , β ) \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta) r(α1,α2,,αs)=r(α1,α2,,αs,β)

2.有关向量组的线性相关性

(1)部分相关,整体相关;整体无关,部分无关.

(2) ① n n n n n n维向量
α 1 , α 2 ⋯ α n \alpha_{1},\alpha_{2}\cdots\alpha_{n} α1,α2αn线性无关 ⇔ ∣ [ α 1 α 2 ⋯ α n ] ∣ ≠ 0 \Leftrightarrow \left|\left\lbrack \alpha_{1}\alpha_{2}\cdots\alpha_{n} \right\rbrack \right| \neq0 [α1α2αn]=0 n n n n n n维向量 α 1 , α 2 ⋯ α n \alpha_{1},\alpha_{2}\cdots\alpha_{n} α1,α2αn线性相关
⇔ ∣ [ α 1 , α 2 , ⋯   , α n ] ∣ = 0 \Leftrightarrow |\lbrack\alpha_{1},\alpha_{2},\cdots,\alpha_{n}\rbrack| = 0 [α1,α2,,αn]=0

n + 1 n + 1 n+1 n n n维向量线性相关。

③ 若 α 1 , α 2 ⋯ α S \alpha_{1},\alpha_{2}\cdots\alpha_{S} α1,α2αS线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

(1) α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs线性相关 ⇔ \Leftrightarrow 至少有一个向量可以用其余向量线性表示。

(2) α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs线性无关, α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs β \beta β线性相关 ⇔ β \Leftrightarrow\beta β 可以由 α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs唯一线性表示。

(3) β \beta β可以由 α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs线性表示
⇔ r ( α 1 , α 2 , ⋯   , α s ) = r ( α 1 , α 2 , ⋯   , α s , β ) \Leftrightarrow r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s}) =r(\alpha_{1},\alpha_{2},\cdots,\alpha_{s},\beta) r(α1,α2,,αs)=r(α1,α2,,αs,β)

4.向量组的秩与矩阵的秩之间的关系

r ( A m × n ) = r r(A_{m \times n}) =r r(Am×n)=r,则 A A A的秩 r ( A ) r(A) r(A) A A A的行列向量组的线性相关性关系为:

(1) 若 r ( A m × n ) = r = m r(A_{m \times n}) = r = m r(Am×n)=r=m,则 A A A的行向量组线性无关。

(2) 若 r ( A m × n ) = r < m r(A_{m \times n}) = r < m r(Am×n)=r<m,则 A A A的行向量组线性相关。

(3) 若 r ( A m × n ) = r = n r(A_{m \times n}) = r = n r(Am×n)=r=n,则 A A A的列向量组线性无关。

(4) 若 r ( A m × n ) = r < n r(A_{m \times n}) = r < n r(Am×n)=r<n,则 A A A的列向量组线性相关。

5. n \mathbf{n} n维向量空间的基变换公式及过渡矩阵

α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn β 1 , β 2 , ⋯   , β n \beta_{1},\beta_{2},\cdots,\beta_{n} β1,β2,,βn是向量空间 V V V的两组基,则基变换公式为:

( β 1 , β 2 , ⋯   , β n ) = ( α 1 , α 2 , ⋯   , α n ) [ c 11 c 12 ⋯ c 1 n c 21 c 22 ⋯ c 2 n ⋯ ⋯ ⋯ ⋯ c n 1 c n 2 ⋯ c n n ] = ( α 1 , α 2 , ⋯   , α n ) C (\beta_{1},\beta_{2},\cdots,\beta_{n}) = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})\begin{bmatrix} c_{11}& c_{12}& \cdots & c_{1n} \\ c_{21}& c_{22}&\cdots & c_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ c_{n1}& c_{n2} & \cdots & c_{{nn}} \\\end{bmatrix} = (\alpha_{1},\alpha_{2},\cdots,\alpha_{n})C (β1,β2,,βn)=(α1,α2,,αn) c11c21cn1c12c22cn2c1nc2ncnn =(α1,α2,,αn)C

其中 C C C是可逆矩阵,称为由基 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn到基 β 1 , β 2 , ⋯   , β n \beta_{1},\beta_{2},\cdots,\beta_{n} β1,β2,,βn的过渡矩阵。

6.坐标变换公式

若向量 γ \gamma γ在基 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn与基 β 1 , β 2 , ⋯   , β n \beta_{1},\beta_{2},\cdots,\beta_{n} β1,β2,,βn的坐标分别是
X = ( x 1 , x 2 , ⋯   , x n ) T X = {(x_{1},x_{2},\cdots,x_{n})}^{T} X=(x1,x2,,xn)T

Y = ( y 1 , y 2 , ⋯   , y n ) T Y = \left( y_{1},y_{2},\cdots,y_{n} \right)^{T} Y=(y1,y2,,yn)T 即: γ = x 1 α 1 + x 2 α 2 + ⋯ + x n α n = y 1 β 1 + y 2 β 2 + ⋯ + y n β n \gamma =x_{1}\alpha_{1} + x_{2}\alpha_{2} + \cdots + x_{n}\alpha_{n} = y_{1}\beta_{1} +y_{2}\beta_{2} + \cdots + y_{n}\beta_{n} γ=x1α1+x2α2++xnαn=y1β1+y2β2++ynβn,则向量坐标变换公式为 X = C Y X = CY X=CY Y = C − 1 X Y = C^{- 1}X Y=C1X,其中 C C C是从基 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn到基 β 1 , β 2 , ⋯   , β n \beta_{1},\beta_{2},\cdots,\beta_{n} β1,β2,,βn的过渡矩阵。

7.向量的内积

( α , β ) = a 1 b 1 + a 2 b 2 + ⋯ + a n b n = α T β = β T α (\alpha,\beta) = a_{1}b_{1} + a_{2}b_{2} + \cdots + a_{n}b_{n} = \alpha^{T}\beta = \beta^{T}\alpha (α,β)=a1b1+a2b2++anbn=αTβ=βTα

8.Schmidt 正交化

α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs线性无关,则可构造 β 1 , β 2 , ⋯   , β s \beta_{1},\beta_{2},\cdots,\beta_{s} β1,β2,,βs使其两两正交,且 β i \beta_{i} βi仅是 α 1 , α 2 , ⋯   , α i \alpha_{1},\alpha_{2},\cdots,\alpha_{i} α1,α2,,αi的线性组合 ( i = 1 , 2 , ⋯   , n ) (i= 1,2,\cdots,n) (i=1,2,,n),再把 β i \beta_{i} βi单位化,记 γ i = β i ∣ β i ∣ \gamma_{i} =\frac{\beta_{i}}{\left| \beta_{i}\right|} γi=βiβi,则 γ 1 , γ 2 , ⋯   , γ i \gamma_{1},\gamma_{2},\cdots,\gamma_{i} γ1,γ2,,γi是规范正交向量组。其中
β 1 = α 1 \beta_{1} = \alpha_{1} β1=α1 β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_{2} = \alpha_{2} -\frac{(\alpha_{2},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} β2=α2(β1,β1)(α2,β1)β1 β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_{3} =\alpha_{3} - \frac{(\alpha_{3},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} -\frac{(\alpha_{3},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2

β s = α s − ( α s , β 1 ) ( β 1 , β 1 ) β 1 − ( α s , β 2 ) ( β 2 , β 2 ) β 2 − ⋯ − ( α s , β s − 1 ) ( β s − 1 , β s − 1 ) β s − 1 \beta_{s} = \alpha_{s} - \frac{(\alpha_{s},\beta_{1})}{(\beta_{1},\beta_{1})}\beta_{1} - \frac{(\alpha_{s},\beta_{2})}{(\beta_{2},\beta_{2})}\beta_{2} - \cdots - \frac{(\alpha_{s},\beta_{s - 1})}{(\beta_{s - 1},\beta_{s - 1})}\beta_{s - 1} βs=αs(β1,β1)(αs,β1)β1(β2,β2)(αs,β2)β2(βs1,βs1)(αs,βs1)βs1

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。

线性方程组

1.克莱姆法则

线性方程组 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_{1} + a_{12}x_{2} + \cdots +a_{1n}x_{n} = b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \cdots + a_{2n}x_{n} =b_{2} \\ \quad\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots\cdots \\ a_{n1}x_{1} + a_{n2}x_{2} + \cdots + a_{{nn}}x_{n} = b_{n} \\ \end{cases} a11x1+a12x2++a1nxn=b1a21x1+a22x2++a2nxn=b2⋯⋯⋯⋯⋯⋯⋯⋯⋯an1x1+an2x2++annxn=bn,如果系数行列式 D = ∣ A ∣ ≠ 0 D = \left| A \right| \neq 0 D=A=0,则方程组有唯一解, x 1 = D 1 D , x 2 = D 2 D , ⋯   , x n = D n D x_{1} = \frac{D_{1}}{D},x_{2} = \frac{D_{2}}{D},\cdots,x_{n} =\frac{D_{n}}{D} x1=DD1,x2=DD2,,xn=DDn,其中 D j D_{j} Dj是把 D D D中第 j j j列元素换成方程组右端的常数列所得的行列式。

2. n n n阶矩阵 A A A可逆 ⇔ A x = 0 \Leftrightarrow Ax = 0 Ax=0只有零解。 ⇔ ∀ b , A x = b \Leftrightarrow\forall b,Ax = b b,Ax=b总有唯一解,一般地, r ( A m × n ) = n ⇔ A x = 0 r(A_{m \times n}) = n \Leftrightarrow Ax= 0 r(Am×n)=nAx=0只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设 A A A m × n m \times n m×n矩阵,若 r ( A m × n ) = m r(A_{m \times n}) = m r(Am×n)=m,则对 A x = b Ax =b Ax=b而言必有 r ( A ) = r ( A ⋮ b ) = m r(A) = r(A \vdots b) = m r(A)=r(Ab)=m,从而 A x = b Ax = b Ax=b有解。

(2) 设 x 1 , x 2 , ⋯ x s x_{1},x_{2},\cdots x_{s} x1,x2,xs A x = b Ax = b Ax=b的解,则 k 1 x 1 + k 2 x 2 ⋯ + k s x s k_{1}x_{1} + k_{2}x_{2}\cdots + k_{s}x_{s} k1x1+k2x2+ksxs k 1 + k 2 + ⋯ + k s = 1 k_{1} + k_{2} + \cdots + k_{s} = 1 k1+k2++ks=1时仍为 A x = b Ax =b Ax=b的解;但当 k 1 + k 2 + ⋯ + k s = 0 k_{1} + k_{2} + \cdots + k_{s} = 0 k1+k2++ks=0时,则为 A x = 0 Ax =0 Ax=0的解。特别 x 1 + x 2 2 \frac{x_{1} + x_{2}}{2} 2x1+x2 A x = b Ax = b Ax=b的解; 2 x 3 − ( x 1 + x 2 ) 2x_{3} - (x_{1} +x_{2}) 2x3(x1+x2) A x = 0 Ax = 0 Ax=0的解。

(3) 非齐次线性方程组 A x = b {Ax} = b Ax=b无解 ⇔ r ( A ) + 1 = r ( A ‾ ) ⇔ b \Leftrightarrow r(A) + 1 =r(\overline{A}) \Leftrightarrow b r(A)+1=r(A)b不能由 A A A的列向量 α 1 , α 2 , ⋯   , α n \alpha_{1},\alpha_{2},\cdots,\alpha_{n} α1,α2,,αn线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组 A x = 0 {Ax} = 0 Ax=0恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此 A x = 0 {Ax}= 0 Ax=0的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是 n − r ( A ) n - r(A) nr(A),解空间的一组基称为齐次方程组的基础解系。

(2) η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt A x = 0 {Ax} = 0 Ax=0的基础解系,即:

  1. η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt A x = 0 {Ax} = 0 Ax=0的解;

  2. η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt线性无关;

  3. A x = 0 {Ax} = 0 Ax=0的任一解都可以由 η 1 , η 2 , ⋯   , η t \eta_{1},\eta_{2},\cdots,\eta_{t} η1,η2,,ηt线性表出.
    k 1 η 1 + k 2 η 2 + ⋯ + k t η t k_{1}\eta_{1} + k_{2}\eta_{2} + \cdots + k_{t}\eta_{t} k1η1+k2η2++ktηt A x = 0 {Ax} = 0 Ax=0的通解,其中 k 1 , k 2 , ⋯   , k t k_{1},k_{2},\cdots,k_{t} k1,k2,,kt是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

(1) 设 λ \lambda λ A A A的一个特征值,则 k A , a A + b E , A 2 , A m , f ( A ) , A T , A − 1 , A ∗ {kA},{aA} + {bE},A^{2},A^{m},f(A),A^{T},A^{- 1},A^{*} kA,aA+bE,A2,Am,f(A),AT,A1,A有一个特征值分别为
k λ , a λ + b , λ 2 , λ m , f ( λ ) , λ , λ − 1 , ∣ A ∣ λ , {kλ},{aλ} + b,\lambda^{2},\lambda^{m},f(\lambda),\lambda,\lambda^{- 1},\frac{|A|}{\lambda}, ,+b,λ2,λm,f(λ),λ,λ1,λA,且对应特征向量相同( A T A^{T} AT 例外)。

(2)若 λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2},\cdots,\lambda_{n} λ1,λ2,,λn A A A n n n个特征值,则 ∑ i = 1 n λ i = ∑ i = 1 n a i i , ∏ i = 1 n λ i = ∣ A ∣ \sum_{i= 1}^{n}\lambda_{i} = \sum_{i = 1}^{n}a_{{ii}},\prod_{i = 1}^{n}\lambda_{i}= |A| i=1nλi=i=1naii,i=1nλi=A ,从而 ∣ A ∣ ≠ 0 ⇔ A |A| \neq 0 \Leftrightarrow A A=0A没有特征值。

(3)设 λ 1 , λ 2 , ⋯   , λ s \lambda_{1},\lambda_{2},\cdots,\lambda_{s} λ1,λ2,,λs A A A s s s个特征值,对应特征向量为 α 1 , α 2 , ⋯   , α s \alpha_{1},\alpha_{2},\cdots,\alpha_{s} α1,α2,,αs

若: α = k 1 α 1 + k 2 α 2 + ⋯ + k s α s \alpha = k_{1}\alpha_{1} + k_{2}\alpha_{2} + \cdots + k_{s}\alpha_{s} α=k1α1+k2α2++ksαs ,

则: A n α = k 1 A n α 1 + k 2 A n α 2 + ⋯ + k s A n α s = k 1 λ 1 n α 1 + k 2 λ 2 n α 2 + ⋯ k s λ s n α s A^{n}\alpha = k_{1}A^{n}\alpha_{1} + k_{2}A^{n}\alpha_{2} + \cdots +k_{s}A^{n}\alpha_{s} = k_{1}\lambda_{1}^{n}\alpha_{1} +k_{2}\lambda_{2}^{n}\alpha_{2} + \cdots k_{s}\lambda_{s}^{n}\alpha_{s} Anα=k1Anα1+k2Anα2++ksAnαs=k1λ1nα1+k2λ2nα2+ksλsnαs

2.相似变换、相似矩阵的概念及性质

(1) 若 A ∼ B A \sim B AB,则

  1. A T ∼ B T , A − 1 ∼ B − 1 , , A ∗ ∼ B ∗ A^{T} \sim B^{T},A^{- 1} \sim B^{- 1},,A^{*} \sim B^{*} ATBT,A1B1,,AB

  2. ∣ A ∣ = ∣ B ∣ , ∑ i = 1 n A i i = ∑ i = 1 n b i i , r ( A ) = r ( B ) |A| = |B|,\sum_{i = 1}^{n}A_{{ii}} = \sum_{i =1}^{n}b_{{ii}},r(A) = r(B) A=B,i=1nAii=i=1nbii,r(A)=r(B)

  3. ∣ λ E − A ∣ = ∣ λ E − B ∣ |\lambda E - A| = |\lambda E - B| λEA=λEB,对 ∀ λ \forall\lambda λ成立

3.矩阵可相似对角化的充分必要条件

(1)设 A A A n n n阶方阵,则 A A A可对角化 ⇔ \Leftrightarrow 对每个 k i k_{i} ki重根特征值 λ i \lambda_{i} λi,有 n − r ( λ i E − A ) = k i n-r(\lambda_{i}E - A) = k_{i} nr(λiEA)=ki

(2) 设 A A A可对角化,则由 P − 1 A P = Λ , P^{- 1}{AP} = \Lambda, P1AP=Λ, A = P Λ P − 1 A = {PΛ}P^{-1} A=PΛP1,从而 A n = P Λ n P − 1 A^{n} = P\Lambda^{n}P^{- 1} An=PΛnP1

(3) 重要结论

  1. A ∼ B , C ∼ D A \sim B,C \sim D AB,CD,则 [ A O O C ] ∼ [ B O O D ] \begin{bmatrix} A & O \\ O & C \\\end{bmatrix} \sim \begin{bmatrix} B & O \\ O & D \\\end{bmatrix} [AOOC][BOOD].

  2. A ∼ B A \sim B AB,则 f ( A ) ∼ f ( B ) , ∣ f ( A ) ∣ ∼ ∣ f ( B ) ∣ f(A) \sim f(B),\left| f(A) \right| \sim \left| f(B)\right| f(A)f(B),f(A)f(B),其中 f ( A ) f(A) f(A)为关于 n n n阶方阵 A A A的多项式。

  3. A A A为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩( A A A)

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设 A , B A,B A,B为两个 n n n阶方阵,如果存在一个可逆矩阵 P P P,使得 B = P − 1 A P B =P^{- 1}{AP} B=P1AP成立,则称矩阵 A A A B B B相似,记为 A ∼ B A \sim B AB

(2)相似矩阵的性质:如果 A ∼ B A \sim B AB则有:

  1. A T ∼ B T A^{T} \sim B^{T} ATBT

  2. A − 1 ∼ B − 1 A^{- 1} \sim B^{- 1} A1B1 (若 A A A B B B均可逆)

  3. A k ∼ B k A^{k} \sim B^{k} AkBk k k k为正整数)

  4. ∣ λ E − A ∣ = ∣ λ E − B ∣ \left| {λE} - A \right| = \left| {λE} - B \right| λEA=λEB,从而 A , B A,B A,B
    有相同的特征值

  5. ∣ A ∣ = ∣ B ∣ \left| A \right| = \left| B \right| A=B,从而 A , B A,B A,B同时可逆或者不可逆

  6. ( A ) = \left( A \right) = (A)= ( B ) , ∣ λ E − A ∣ = ∣ λ E − B ∣ \left( B \right),\left| {λE} - A \right| =\left| {λE} - B \right| (B),λEA=λEB A , B A,B A,B不一定相似

二次型

1. n \mathbf{n} n个变量 x 1 , x 2 , ⋯   , x n \mathbf{x}_{\mathbf{1}}\mathbf{,}\mathbf{x}_{\mathbf{2}}\mathbf{,\cdots,}\mathbf{x}_{\mathbf{n}} x1,x2,,xn的二次齐次函数

f ( x 1 , x 2 , ⋯   , x n ) = ∑ i = 1 n ∑ j = 1 n a i j x i y j f(x_{1},x_{2},\cdots,x_{n}) = \sum_{i = 1}^{n}{\sum_{j =1}^{n}{a_{{ij}}x_{i}y_{j}}} f(x1,x2,,xn)=i=1nj=1naijxiyj,其中 a i j = a j i ( i , j = 1 , 2 , ⋯   , n ) a_{{ij}} = a_{{ji}}(i,j =1,2,\cdots,n) aij=aji(i,j=1,2,,n),称为 n n n元二次型,简称二次型. 若令 x =   [ x 1 x 1 ⋮ x n ] , A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ] x = \ \begin{bmatrix}x_{1} \\ x_{1} \\ \vdots \\ x_{n} \\ \end{bmatrix},A = \begin{bmatrix} a_{11}& a_{12}& \cdots & a_{1n} \\ a_{21}& a_{22}& \cdots & a_{2n} \\ \cdots &\cdots &\cdots &\cdots \\ a_{n1}& a_{n2} & \cdots & a_{{nn}} \\\end{bmatrix} x=  x1x1xn ,A= a11a21an1a12a22an2a1na2nann ,这二次型 f f f可改写成矩阵向量形式 f = x T A x f =x^{T}{Ax} f=xTAx。其中 A A A称为二次型矩阵,因为 a i j = a j i ( i , j = 1 , 2 , ⋯   , n ) a_{{ij}} =a_{{ji}}(i,j =1,2,\cdots,n) aij=aji(i,j=1,2,,n),所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵 A A A的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型 f = ( x 1 , x 2 , ⋯   , x n ) = x T A x f = \left( x_{1},x_{2},\cdots,x_{n} \right) =x^{T}{Ax} f=(x1,x2,,xn)=xTAx经过合同变换 x = C y x = {Cy} x=Cy化为 f = x T A x = y T C T A C f = x^{T}{Ax} =y^{T}C^{T}{AC} f=xTAx=yTCTAC

y = ∑ i = 1 r d i y i 2 y = \sum_{i = 1}^{r}{d_{i}y_{i}^{2}} y=i=1rdiyi2称为 f ( r ≤ n ) f(r \leq n) f(rn)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由 r ( A ) r(A) r(A)唯一确定。

(3) 规范形

任一实二次型 f f f都可经过合同变换化为规范形 f = z 1 2 + z 2 2 + ⋯ z p 2 − z p + 1 2 − ⋯ − z r 2 f = z_{1}^{2} + z_{2}^{2} + \cdots z_{p}^{2} - z_{p + 1}^{2} - \cdots -z_{r}^{2} f=z12+z22+zp2zp+12zr2,其中 r r r A A A的秩, p p p为正惯性指数, r − p r -p rp为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

A A A正定 ⇒ k A ( k > 0 ) , A T , A − 1 , A ∗ \Rightarrow {kA}(k > 0),A^{T},A^{- 1},A^{*} kA(k>0),AT,A1,A正定; ∣ A ∣ > 0 |A| >0 A>0, A A A可逆; a i i > 0 a_{{ii}} > 0 aii>0,且 ∣ A i i ∣ > 0 |A_{{ii}}| > 0 Aii>0

A A A B B B正定 ⇒ A + B \Rightarrow A +B A+B正定,但 A B {AB} AB B A {BA} BA不一定正定

A A A正定 ⇔ f ( x ) = x T A x > 0 , ∀ x ≠ 0 \Leftrightarrow f(x) = x^{T}{Ax} > 0,\forall x \neq 0 f(x)=xTAx>0,x=0

⇔ A \Leftrightarrow A A的各阶顺序主子式全大于零

⇔ A \Leftrightarrow A A的所有特征值大于零

⇔ A \Leftrightarrow A A的正惯性指数为 n n n

⇔ \Leftrightarrow 存在可逆阵 P P P使 A = P T P A = P^{T}P A=PTP

⇔ \Leftrightarrow 存在正交矩阵 Q Q Q,使 Q T A Q = Q − 1 A Q = ( λ 1 ⋱ λ n ) , Q^{T}{AQ} = Q^{- 1}{AQ} =\begin{pmatrix} \lambda_{1} & & \\ \begin{matrix} & \\ & \\ \end{matrix} &\ddots & \\ & & \lambda_{n} \\ \end{pmatrix}, QTAQ=Q1AQ= λ1λn ,

其中 λ i > 0 , i = 1 , 2 , ⋯   , n . \lambda_{i} > 0,i = 1,2,\cdots,n. λi>0,i=1,2,,n.正定 ⇒ k A ( k > 0 ) , A T , A − 1 , A ∗ \Rightarrow {kA}(k >0),A^{T},A^{- 1},A^{*} kA(k>0),AT,A1,A正定; ∣ A ∣ > 0 , A |A| > 0,A A>0,A可逆; a i i > 0 a_{{ii}} >0 aii>0,且 ∣ A i i ∣ > 0 |A_{{ii}}| > 0 Aii>0

总体框架

线性代数 | 机器学习数学基础,机器学习,机器学习,深度学习,人工智能

运算性质

线性代数 | 机器学习数学基础,机器学习,机器学习,深度学习,人工智能

参考文章

机器学习的线性代数基础概念 · 机器学习数学基础 (itdiffer.com)

机器学习中的线性代数 - 知乎 (zhihu.com)

线性代数基本知识-思维导图_线性代数思维导图_Arrow的博客-CSDN博客

推荐阅读

【机器学习的数学基础】(一)线性代数(Linear Algebra)(上)_linear algebra for everyone csdn_二进制人工智能的博客-CSDN博客

【机器学习的数学基础】(二)线性代数(Linear Algebra)(中)_二进制人工智能的博客-CSDN博客

【机器学习的数学基础】(三)线性代数(Linear Algebra)(下)_ordered basis线代_二进制人工智能的博客-CSDN博客

考研线性代数最全知识点梳理思维导图 - 知乎 (zhihu.com)

LQLab: Coding Learning Writing — LQLab

本文由博客一文多发平台 OpenWrite 发布!文章来源地址https://www.toymoban.com/news/detail-809824.html

到了这里,关于线性代数 | 机器学习数学基础的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 自动编码器的数学基础:概率论与线性代数

    自动编码器(Autoencoders)是一种深度学习模型,它通过学习压缩输入数据的低维表示,然后再将其重新解码为原始数据形式。自动编码器的主要目的是学习数据的特征表示,从而可以用于降维、生成新数据、数据压缩等应用。在这篇文章中,我们将讨论自动编码器的数学基础,

    2024年02月20日
    浏览(48)
  • 人工智能中数学基础:线性代数,解析几何和微积分

    在人工智能领域,线性代数、解析几何和微积分是最基础的数学知识。这些数学知识不仅在人工智能领域中被广泛应用,也是其他领域的重要基础。本文将介绍人工智能中的线性代数、解析几何和微积分的基础知识和应用。

    2024年02月16日
    浏览(51)
  • AI人工智能中的数学基础原理与Python实战: 线性代数基础概述

    随着人工智能技术的不断发展,人工智能已经成为了许多行业的核心技术之一。在人工智能领域中,数学是一个非常重要的基础。线性代数是数学中的一个重要分支,它在人工智能中发挥着至关重要的作用。本文将介绍线性代数的基本概念、算法原理、具体操作步骤以及数学

    2024年04月12日
    浏览(67)
  • 计算机科学cs/电子信息ei面试准备——数学基础/线性代数复习

    目录 1. 中值定理 2. 梯度和散度 方向导数和梯度 通量与散度 3. 泰勒公式是为了解决什么问题的? 4. 矩阵的秩是什么,矩阵的秩物理意义? 矩阵的秩 矩阵秩的物理意义 5. 特征值和特征向量的概念 5.1 传统方法 例题 5.2 雅可比迭代法 6. 什么是线性相关以及线性相关的性质?

    2024年02月16日
    浏览(45)
  • 机器学习线性代数基础

    本文是斯坦福大学CS 229机器学习课程的基础材料,原始文件下载 原文作者:Zico Kolter,修改:Chuong Do, Tengyu Ma 翻译:黄海广 备注:请关注github的更新,线性代数和概率论已经更新完毕。 1. 基础概念和符号 线性代数提供了一种紧凑地表示和操作线性方程组的方法。 例如,以

    2024年02月13日
    浏览(48)
  • 深度学习-必备的数学知识-线性代数6

    线性代数 通过伪逆求解线性方程组 伪逆,又称为Moore-Penrose逆,它是一种广义的矩阵。我们可以找到任意一个矩阵的伪逆。矩阵 A mathbf{A} A 的伪逆定义为: A + = lim ⁡ x → 0 ( A T A + α I ) − 1 A T mathbf{A}^+=lim_{x to 0}(mathbf{A}^Tmathbf{A}+alphamathbf{I})^{-1}mathbf{A}^T A + = x → 0 lim ​

    2024年01月18日
    浏览(59)
  • 深度学习-必备的数学知识-线性代数(合集)

    为方便大家阅读,这里推出一个线性代数的合集。这与之前的内容是一致的。 我们在深度学习-简介和 深度学习-历史背景中已经初步了解的深度学习。在我们开始学习深度学习前还需要做些准备工作。就是学习应用数学和机器学习基础。 想要理解深度学习这些是必不可少的

    2024年02月03日
    浏览(58)
  • 深度学习-必备的数学知识-线性代数-1

    我们在深度学习-简介和 深度学习-历史背景中已经初步了解的深度学习。在我们真正开始学习深度学习前还需要做些准备工作。那就是学习应用数学和机器学习基础。想要理解深度学习这些是必不可少的。 我将在这篇文章中为大家介绍一部分与深度学习有关的线性代数。 我

    2024年02月05日
    浏览(51)
  • 深度学习-必备的数学知识-线性代数5

    线性代数 在数学中,分解通常指的是将一个复杂的对象或结构分解为更简单的部件或组件。这个概念在许多数学领域都有应用。在线性代数中,矩阵分解是常见的一个主题,我们通过分解矩阵来发现它不明显的性质。 矩阵有许多种的分解方式:LU分解、QR分解、特征分解、奇

    2024年02月02日
    浏览(72)
  • 【学习笔记】(数学)线性代数-矩阵的概念和特殊矩阵

    由 m × n mtimes n m × n 个数按一定的次序排成的 m m m 行 n n n 列的矩形数表成为 m × n mtimes n m × n 的矩阵,简称 矩阵 (matrix)。 横的各排称为矩阵的 行 ,竖的各列称为矩阵的 列 。 元素为实数的称为 实矩阵 ,一般情况下我们所讨论的矩阵均为实矩阵。 1 行 n n n 列的矩阵称为

    2024年02月09日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包