第三课:GPT

这篇具有很好参考价值的文章主要介绍了第三课:GPT。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第三课:GPT

1、学习总结:

GPT出现的原因

未标注的文本数据远多于已标注的文本数据,并且对于不同的下游任务会存在不同的标注方式

GPT的方法原理

半监督学习

  • 基于大量未标注的文本数据,训练预训练语言模型
  • 使用已标注文本数据,对模型针对某一特定下游任务进行finetune,只更改output layer(线性层)

目前存在的问题

  • 自然语言处理的下游任务非常多元,难以有统一的优化目标
  • 难以将预训练模型的信息完全传递到finetune的下游任务中

无监督的预训练

优化目标

第三课:GPT,昇思技术公开课学习笔记,gpt

模型结构

由于训练objective的选择,gpt在模型选择上不应该看见当前token后的信息,故模型应设计为单向网络,即transformer中的decoder结构。

第三课:GPT,昇思技术公开课学习笔记,gpt

import os
import logging
import numpy as np
import mindspore
from mindspore import nn
from mindspore import ops
from mindspore import Tensor
from mindspore.common.initializer import initializer, Normal
from mindnlp.models.gpt.gpt_config import GPTConfig
from mindnlp._legacy.nn import Dropout
from mindnlp.abc import PreTrainedModel
from mindnlp.models.utils import Conv1D, prune_conv1d_layer, find_pruneable_heads_and_indices
from mindnlp.models.utils import SequenceSummary
from mindnlp.models.activations import ACT2FN
from mindnlp import GPTConfig
# Feed-Forward 实现
class MLP(nn.Cell):
    r"""
    GPT MLP
	"""

    def __init__(self, n_state, config):
        super().__init__()
        n_embd = config.n_embd
        self.c_fc = Conv1D(n_state, n_embd)
        self.c_proj = Conv1D(n_embd, n_state)
        self.act = ACT2FN[config.afn]
        self.dropout = Dropout(p=config.resid_pdrop)

    def construct(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)
# Multi-head attention 实现

class Attention(nn.Cell):
    r"""
    GPT Attention
    """

    def __init__(self, nx, n_positions, config, scale=False):
        super().__init__()
        n_state = nx
        if n_state % config.n_head != 0:
            raise ValueError(f"Attention n_state shape: {n_state} must be divisible by config.n_head {config.n_head}")

        self.bias = Tensor(np.tril(np.ones((n_positions, n_positions))), mindspore.float32).view(1, 1, n_positions, n_positions)
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale

        self.c_attn = Conv1D(n_state * 3, n_state)
        self.c_attn = Conv1D(n_state * 3, n_state)
        self.c_proj = Conv1D(n_state, n_state)
        self.attn_dropout = Dropout(p=config.attn_pdrop)
        self.resid_dropout = Dropout(p=config.resid_pdrop)
        self.pruned_heads = set()

        self.output_attentions = config.output_attentions

    def prune_heads(self, heads):
        """
        Prunes heads of the model.
        """
        if len(heads) == 0:
            return
        head_size = self.split_size//self.n_head
        heads, index = find_pruneable_heads_and_indices(heads, self.n_head, head_size, self.pruned_heads)
        index_attn = ops.cat([index, index + self.split_size, index + (2 * self.split_size)])
        self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, axis=1)
        self.c_proj = prune_conv1d_layer(self.c_proj, index, axis=0)
        self.split_size = (self.split_size // self.n_head) * (self.n_head - len(heads))
        self.n_head = self.n_head - len(heads)
        self.pruned_heads = self.pruned_heads.union(heads)

    def _attn(self, q, k, v, attention_mask=None, head_mask=None):
        w = ops.matmul(q, k)
        if self.scale:
            w = w / ops.sqrt(ops.scalar_to_tensor(v.shape[-1]))
        b = self.bias[:, :, : w.shape[-2], : w.shape[-1]]
        w = w * b + -1e9 * (1 - b)

        if attention_mask is not None:
            w = w + attention_mask

        w = ops.softmax(w)
        w = self.attn_dropout(w)

        if head_mask is not None:
            w = w * head_mask

        outputs = (ops.matmul(w, v),)
        if self.output_attentions:
            outputs += (w,)
        return outputs


    def merge_heads(self, x):
        """merge heads"""
        x = x.transpose(0, 2, 1, 3)
        new_x_shape = x.shape[:-2] + (x.shape[-2] * x.shape[-1],)
        return x.view(new_x_shape)

    def split_heads(self, x, k=False):
        """split heads"""
        new_x_shape = x.shape[:-1] + (self.n_head, x.shape[-1] // self.n_head)
        x = x.view(new_x_shape)
        if k:
            return x.transpose(0, 2, 3, 1)
        return x.transpose(0, 2, 1, 3)

    def construct(self, x, attention_mask=None, head_mask=None):
        x = self.c_attn(x)
        query, key, value = ops.split(x, self.split_size, axis=2)
        query = self.split_heads(query)
        key = self.split_heads(key, k=True)
        value = self.split_heads(value)

        attn_outputs = self._attn(query, key, value, attention_mask, head_mask)
        a = attn_outputs[0]

        a = self.merge_heads(a)
        a = self.c_proj(a)
        a = self.resid_dropout(a)
        outputs = (a,) + attn_outputs[1:]
        return outputs
class Block(nn.Cell):
    r"""
    GPT Block
    """

    def __init__(self, n_positions, config, scale=False):
        super().__init__()
        nx = config.n_embd
        self.attn = Attention(nx, n_positions, config, scale)
        self.ln_1 = nn.LayerNorm((nx,), epsilon=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)
        self.ln_2 = nn.LayerNorm((nx,), epsilon=config.layer_norm_epsilon)

    def construct(self, x, attention_mask=None, head_mask=None):
        output_attn = self.attn(
            x,
            attention_mask=attention_mask,
            head_mask=head_mask
        )

        a = output_attn[0]
        n = self.ln_1(x + a)
        m = self.mlp(n)
        h = self.ln_2(n + m)

        outputs = (h,) + output_attn[1:]
        return outputs
class GPTPreTrainedModel(PreTrainedModel):
    """BertPretrainedModel"""
    convert_torch_to_mindspore = torch_to_mindspore
    pretrained_model_archive_map = PRETRAINED_MODEL_ARCHIVE_MAP
    config_class = GPTConfig
    base_model_prefix = 'transformer'

    def _init_weights(self, cell):
        """Initialize the weights"""
        if isinstance(cell, nn.Dense):
            cell.weight.set_data(initializer(Normal(self.config.initializer_range),
                                                    cell.weight.shape, cell.weight.dtype))
            if cell.has_bias:
                cell.bias.set_data(initializer('zeros', cell.bias.shape, cell.bias.dtype))
        elif isinstance(cell, nn.Embedding):
            embedding_table = initializer(Normal(self.config.initializer_range),
                                                 cell.embedding_table.shape,
                                                 cell.embedding_table.dtype)
            if cell.padding_idx is not None:
                embedding_table[cell.padding_idx] = 0
            cell.embedding_table.set_data(embedding_table)
        elif isinstance(cell, nn.LayerNorm):
            cell.gamma.set_data(initializer('ones', cell.gamma.shape, cell.gamma.dtype))
            cell.beta.set_data(initializer('zeros', cell.beta.shape, cell.beta.dtype))

class GPTModel(GPTPreTrainedModel):
    """
    The bare GPT transformer model outputting raw hidden-states without any specific head on top
    """

    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.tokens_embed = nn.Embedding(config.vocab_size, config.n_embd)
        self.positions_embed = nn.Embedding(config.n_positions, config.n_embd)
        self.drop = nn.Dropout(p=config.embd_pdrop)
        self.h = nn.CellList([Block(config.n_positions, config, scale=True) for _ in range(config.n_layer)])
        self.position_ids = ops.arange(config.n_positions)

        self.n_layer = self.config.n_layer
        self.output_attentions = self.config.output_attentions
        self.output_hidden_states = self.config.output_hidden_states

    def get_input_embeddings(self):
        """
        return the input embeddings layer
        """
        return self.tokens_embed

    def set_input_embeddings(self, value):
        """
        set the input embeddings layer
        """
        self.tokens_embed = value

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def construct(
            self,
            input_ids=None,
            attention_mask=None,
            token_type_ids=None,
            position_ids=None,
            head_mask=None,
            inputs_embeds=None,
    ):
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        if input_ids is not None:
            input_shape = input_ids.shape
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.shape[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        if position_ids is None:
            position_ids = self.position_ids[None, : input_shape[-1]]

        if attention_mask is not None:
            attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
            attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype)
            attention_mask = (1.0 - attention_mask) * Tensor(np.finfo(mindspore.dtype_to_nptype(self.dtype)).min,
                                                             self.dtype)

        head_mask = self.get_head_mask(head_mask, self.n_layer)

        if inputs_embeds is None:
            inputs_embeds = self.tokens_embed(input_ids)
        position_embeds = self.positions_embed(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.shape[-1])
            token_type_embeds = self.tokens_embed(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.shape[-1],)

        all_attentions = ()
        all_hidden_states = ()
        for i, block in enumerate(self.h):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            outputs = block(hidden_states, attention_mask, head_mask[i])
            hidden_states = outputs[0]
            if self.output_attentions:
                all_attentions = all_attentions + (outputs[1],)

        hidden_states = hidden_states.view(*output_shape)

        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        return (hidden_states, all_hidden_states, all_attentions)

监督微调

在已经预训练好的GPT上额外加一层线性层

第三课:GPT,昇思技术公开课学习笔记,gpt

并通过缩小目标与计算结果的误差进行模型优化

第三课:GPT,昇思技术公开课学习笔记,gpt

最终为加速模型收敛及提高模型的泛化性,融入pretrain时language modelling的优化目标

第三课:GPT,昇思技术公开课学习笔记,gpt

# 文本序列分类任务

class GPTForSequenceClassification(GPTPreTrainedModel):
    """
    The Original GPT Model transformer with a sequence classification head on top (linear layer).
    GPTForSequenceClassification uses the last token in order to do the classification, as other causal
    models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the
    last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding
    token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since
    it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
    the last value in each row of the batch).
    """
    def __init__(self, config):
        super().__init__(config)
        self.config = config
        self.num_labels = config.num_labels
        self.transformer = GPTModel(config)
        self.score = nn.Dense(config.n_embd, self.num_labels, has_bias=False)

        self.pad_token_id = self.config.pad_token_id
        problem_type = config.problem_type
        if problem_type is None:
            self.loss = None
        else:
            if self.num_labels == 1:
                self.problem_type = "regression"
                self.loss = nn.MSELoss()
            elif self.num_labels > 1:
                self.problem_type = "single_label_classification"
                self.loss = nn.CrossEntropyLoss()
            else:
                self.problem_type = "multi_label_classification"
                self.loss = nn.BCEWithLogitsLoss()

    def construct(
        self,
        input_ids = None,
        attention_mask = None,
        token_type_ids = None,
        position_ids = None,
        head_mask = None,
        inputs_embeds = None,
        labels = None,
    ):
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in
            `[0, ...,config.num_labels - 1]`.
            If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
            `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        transformer_outputs = self.transformer(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )

        hidden_states = transformer_outputs[0]
        logits = self.score(hidden_states)

        if input_ids is not None:
            batch_size, _ = input_ids.shape[:2]
        else:
            batch_size, _ = inputs_embeds.shape[:2]

        if self.pad_token_id is None and batch_size != 1:
            raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")

        if self.pad_token_id is None:
            sequence_lengths = -1
        else:
            if input_ids is not None:
                sequence_lengths = ops.ne(input_ids, self.pad_token_id).sum(-1) - 1
            else:
                sequence_lengths = -1

        pooled_logits = logits[:, sequence_lengths]

        loss = None

        output = (pooled_logits,) + transformer_outputs[1:]

        if labels is not None:
            if self.num_labels == 1:
                loss = self.loss(pooled_logits.squeeze(), labels.squeeze())
            elif self.num_labels > 1:
                loss = self.loss(pooled_logits.view(-1, self.num_labels), labels.view(-1))
            else:
                loss = self.loss(pooled_logits, labels)

        if loss is not None:
            output = (loss,) + output
        return output

课程ppt及代码地址

  • github地址(网络不好的可以访问下面我克隆到gitee上的地址):GPT

  • gitee地址:GPT

2、学习心得:

​ 通过本次学习,熟悉了Mindspore这个国产深度学习框架,也对GPT的基本技术原理有所了解,同时也学会了如何在IMDb数据集上微调GPT完成一个情感分类的任务,比较有成就感!!!另外就是Selina小姐姐讲课的氛围比较轻松,学起来比较快乐!

3、经验分享:

​ 在启智openI上的npu跑时记得使用mindspore1.7的镜像,同时安装对应mindnlp的版本,不然可能会因为版本不兼容而报错。另外就是IMDB情感分类任务的微调练习一定要做,这样能比较get到整个微调的全流程是怎样的,后面再去学习llama等模型的微调时就会更加得心应手。

4、课程反馈:

​ 本次课程中的代码串讲我觉得是做的最好的地方,没有照着ppt一直念,而是在jupyter lab上把代码和原理结合到一块进行讲解,让学习者对代码的理解更加深入。我觉得内容的最后可以稍微推荐一下与Mindspore大模型相关的套件,让学习者在相关套件上可以开发出更多好玩和有趣的东西!

5、使用MindSpore昇思的体验和反馈:

MindSpore昇思的优点和喜欢的方面:

  1. 灵活性和可扩展性: MindSpore提供了灵活的编程模型,支持静态计算图和动态计算图。这种设计使得它适用于多种类型的机器学习和深度学习任务,并且具有一定的可扩展性。
  2. 跨平台支持: MindSpore支持多种硬件平台,包括CPU、GPU和NPU等,这使得它具有在不同设备上运行的能力,并能充分利用各种硬件加速。
  3. 自动并行和分布式训练: MindSpore提供了自动并行和分布式训练的功能,使得用户可以更轻松地处理大规模数据和模型,并更高效地进行训练。
  4. 生态系统和社区支持: MindSpore致力于建立开放的生态系统,并鼓励社区贡献,这对于一个开源框架来说非常重要,能够帮助用户更好地学习和解决问题。

一些建议和改进方面:

  1. 文档和教程的改进: 文档和教程并不是很详细,希望能够提供更多实用的示例、详细的文档和教程,以帮助用户更快速地上手和解决问题。
  2. 更多的应用场景示例: 提供更多真实场景的示例代码和应用案例,可以帮助用户更好地了解如何在实际项目中应用MindSpore。

6、未来展望:

​ 大模型的内容还是很多的,希望自己能坚持打卡,将后面的内容都学习完,并做出一些有趣好玩的东西来!文章来源地址https://www.toymoban.com/news/detail-809854.html

到了这里,关于第三课:GPT的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • GPT学习笔记-文章的摘要

    在多数针对GPT的应用中,很多都是希望通过GPT加载私有数据,为企业或个人做知识助理。对于海量的数据的处理方法应该是结合向量数据库和已有的文件数据库ES,Mongodb等。但是有一些已有的以文档形式记录的企业知识,怎么处理呢?下面我们看看,openai提供的一个把已有的

    2024年02月05日
    浏览(42)
  • GPT学习笔记-聚类(clustering)

    聚类是一种非常有用的无监督学习技术,它的主要目的是发现数据的内在结构和模式。在许多实际应用中,我们可能没有明确的目标变量或预测目标,但我们仍希望了解数据的组织方式,或者找出数据中的特定模式或组。这就是聚类的价值所在。 尽管聚类是无监督的(即我们

    2024年02月06日
    浏览(38)
  • Auto-GPT 学习笔记

    Auto-GPT 是一个基于 GPT-4 的自主智能体实验项目。 它展示了大规模语言模型的规划、记忆和工具使用能力。 Auto-GPT 的目标是实现一个完全自主的 AI 代理。 GitHub 仓库 规划(Planning) 使用强化学习策略进行多跳思考。 通过角色扮演实现自省。 提供完整的上下文,例如从记忆中获取

    2024年02月11日
    浏览(41)
  • 机器学习笔记 - 关于GPT-4的一些问题清单

            据报道,GPT-4 的系统由八个模型组成,每个模型都有 2200 亿个参数。GPT-4 的参数总数估计约为 1.76 万亿个。         近年来,得益于 GPT-4 等高级语言模型的发展, 自然 语言处理(NLP) 取得了长足的进步。 凭借其前所未有的规模和能力, GPT-4 为语言 AI​​设立

    2024年02月13日
    浏览(45)
  • 网络安全进阶学习第三课——CSRF跨站请求伪造

    会话跟踪是Web程序中常用的技术,用来跟踪用户的整个会话。常用的会话跟踪技术是Cookie与Session。 Cookie是一个保存在客户机中的简单的文本文件,当我们使用自己的电脑,通过浏览器进行访问网页的时候,服务器就会生成一个证书然后返回给浏览器并写入我们的本地电脑,这

    2024年02月12日
    浏览(47)
  • GPT学习笔记-Embedding的降维与2D,3D可视化

    嵌入(Embedding)在机器学习和自然语言处理中是一种表示离散变量(如单词、句子或整个文档)的方式,通常是作为高维向量或者矩阵。嵌入的目标是捕捉到输入数据中的语义信息,使得语义相近的元素在嵌入空间中的距离也比较近。 例如,在自然语言处理中,词嵌入是一种

    2024年02月08日
    浏览(51)
  • 神经网络学习笔记10——RNN、ELMo、Transformer、GPT、BERT

    参考博客1 参考博客2 一、NLP(自然语言处理)是什么 自然语言处理(Natural Language Processing,简称NLP)是用计算机来处理、理解以及运用人类语言(如字符、中文、英文等),它属于人工智能的一个分支,是计算机科学与语言学的交叉学科,又常被称为计算语言学。人类语言是抽

    2024年04月09日
    浏览(43)
  • GPT学习笔记-Enterprise Knowledge Retrieval(企业知识检索)--私有知识库的集成

    openai-cookbook/apps/enterprise-knowledge-retrieval at main · openai/openai-cookbook · GitHub 终于看到对于我解决现有问题的例子代码,对于企业私有知识库的集成。 我对\\\"Retrieval\\\"重新理解了一下,源自动词\\\"retrieve\\\",其基本含义是“取回”,“恢复”,或“检索”。在不同的上下文中,\\\"retriev

    2024年02月11日
    浏览(45)
  • 使用 GPT4 和 ChatGPT 开发应用:前言到第三章

    原文:Developing Apps with GPT-4 and ChatGPT 译者:飞龙 协议:CC BY-NC-SA 4.0 在发布仅仅五天后,ChatGPT 就吸引了惊人的一百万用户,这在科技行业及其他领域引起了轰动。作为一个副作用,OpenAI API 用于人工智能文本生成的接口突然曝光,尽管它已经可用了三年。ChatGPT 界面展示了这

    2024年01月20日
    浏览(73)
  • 快来!Claude无需魔法不限量;百度官方AIGC公开课;Prompt高质量答案完全指南;GPT-5真的要来了?贾扬清离职阿里后首次受访 | ShowMeAI日报

    👀 日报周刊合集 | 🎡 生产力工具与行业应用大全 | 🧡 点赞关注评论拜托啦! Siqi Chen 是初创公司Runway CEO兼AI投资人,他两周前的推特重新引发了热议:预计到2023年底,GPT-4将被新的GPT-5版本取代。 除了透露GPT-5的发布时间外,Siqi Chen还宣布,一些OpenAI员工希望新模型能够与

    2024年02月09日
    浏览(55)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包