如何证明一个矩阵是可逆矩阵?

这篇具有很好参考价值的文章主要介绍了如何证明一个矩阵是可逆矩阵?。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

想要证明一个矩阵是可逆矩阵,其实就是要知道可逆矩阵具有哪些性质。荒原之梦考研数学网把线性代数中可逆矩阵的常用性质都整理在下面了:
如何证明一个矩阵是可逆矩阵?,考研数学,矩阵,可逆矩阵,考研数学,线性代数文章来源地址https://www.toymoban.com/news/detail-809856.html

到了这里,关于如何证明一个矩阵是可逆矩阵?的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【考研数学二】线性代数重点笔记

    目录 第一章 行列式 1.1 行列式的几何意义 1.2 什么是线性相关,线性无关 1.3 行列式几何意义 1.4 行列式求和 1.5 行列式其他性质 1.6 余子式 1.7 对角线行列式 1.8 分块行列式 1.9 范德蒙德行列式 1.10 爪形行列式的计算 第二章 矩阵 2.1 初识矩阵 2.1.1 矩阵的概念 1.1.2 矩阵的运算规

    2024年04月10日
    浏览(45)
  • 线性代数|证明:线性变换在两个基下的矩阵相似

    前置定义 1(基变换公式、过渡矩阵) 设 α 1 , ⋯   , α n boldsymbol{alpha}_1,cdots,boldsymbol{alpha}_n α 1 ​ , ⋯ , α n ​ 及 β 1 , ⋯   , β n boldsymbol{beta}_1,cdots,boldsymbol{beta}_n β 1 ​ , ⋯ , β n ​ 是线性空间 V n V_n V n ​ 中的两个基, { β 1 = p 11 α 1 + p 21 α 2 + ⋯ + p n 1 α n β 2

    2024年02月03日
    浏览(54)
  • 线性代数|证明:矩阵特征值之积等于矩阵行列式的值

    性质 1 设 n n n 阶矩阵 A = ( a i j ) boldsymbol{A} = (a_{ij}) A = ( a ij ​ ) 的特征值为 λ 1 , λ 2 , ⋯   , λ n lambda_1,lambda_2,cdots,lambda_n λ 1 ​ , λ 2 ​ , ⋯ , λ n ​ ,则 λ 1 λ 2 ⋯ λ n = ∣ A ∣ lambda_1 lambda_2 cdots lambda_n = |boldsymbol{A}| λ 1 ​ λ 2 ​ ⋯ λ n ​ = ∣ A ∣ 。 证明 不妨设

    2024年02月08日
    浏览(50)
  • 线性代数|证明:矩阵特征值的倒数是其逆矩阵的特征值

    性质 1 若 λ lambda λ 是 A boldsymbol{A} A 的特征值,当 A boldsymbol{A} A 可逆时, 1 λ frac{1}{lambda} λ 1 ​ 是 A − 1 boldsymbol{A}^{-1} A − 1 的特征值。 证明 因为 λ lambda λ 是 A boldsymbol{A} A 的特征值,所以有 p ≠ 0 boldsymbol{p} ne 0 p  = 0 使 A p = λ p boldsymbol{A} boldsymbol{p} = lambda

    2024年02月08日
    浏览(50)
  • 线性代数|证明:矩阵不同特征值对应的特征向量线性无关

    定理 1 设 λ 1 , λ 2 , ⋯   , λ m lambda_1,lambda_2,cdots,lambda_m λ 1 ​ , λ 2 ​ , ⋯ , λ m ​ 是方阵 A boldsymbol{A} A 的 m m m 个特征值, p 1 , p 2 , ⋯   , p m boldsymbol{p}_1,boldsymbol{p}_2,cdots,boldsymbol{p}_m p 1 ​ , p 2 ​ , ⋯ , p m ​ 依次是与之对应的特征向量,如果 λ 1 , λ 2 , ⋯   , λ

    2024年02月07日
    浏览(60)
  • 线性代数|证明:矩阵特征值之和等于主对角线元素之和

    性质 1 设 n n n 阶矩阵 A = ( a i j ) boldsymbol{A} = (a_{ij}) A = ( a ij ​ ) 的特征值为 λ 1 , λ 2 , ⋯   , λ n lambda_1,lambda_2,cdots,lambda_n λ 1 ​ , λ 2 ​ , ⋯ , λ n ​ ,则 λ 1 + λ 2 + ⋯ + λ n = a 11 + a 22 + ⋯ + a n n lambda_1 + lambda_2 + cdots + lambda_n = a_{11} + a_{22} + cdots + a_{nn} λ 1 ​ + λ 2 ​

    2024年02月08日
    浏览(48)
  • 【考研数学】线性代数第四章 —— 线性方程组(1,基本概念 | 基本定理 | 解的结构)

    继向量的学习后,一鼓作气,把线性方程组也解决了去。O.O 方程组 称为 n n n 元齐次线性方程组。 方程组 称为 n n n 元非齐次线性方程组。 方程组(I)又称为方程组(II)对应的齐次线性方程组或导出方程组。 方程组(I)和方程组(II)分别称为齐次线性方程组和非齐次线

    2024年02月11日
    浏览(43)
  • 【考研数学】线性代数第四章 —— 线性方程组(2,线性方程组的通解 | 理论延伸)

    承接前文,继续学习线性方程组的内容,从方程组的通解开始。 (1)基础解系 —— 设 r ( A ) = r n r(A)=rn r ( A ) = r n ,则 A X = 0 pmb{AX=0} A X = 0 所有解构成的解向量组的极大线性无关组称为方程组 A X = 0 pmb{AX=0} A X = 0 的一个基础解系。基础解系中所含有的线性无关的解向量的个

    2024年02月11日
    浏览(57)
  • 【考研数学】线性代数第六章 —— 二次型(2,基本定理及二次型标准化方法)

    了解了关于二次型的基本概念以及梳理了矩阵三大关系后,我们继续往后学习二次型的内容。 定理 1 —— (标准型定理)任何二次型 X T A X pmb{X}^Tpmb{AX} X T A X 总可以经过可逆的线性变换 X = P Y pmb{X=PY} X = P Y ,即 P pmb{P} P 为可逆矩阵,把二次型 f ( X ) f(pmb{X}) f ( X ) 化为标准

    2024年02月07日
    浏览(41)
  • (done) Positive Semidefinite Matrices 什么是半正定矩阵?如何证明一个矩阵是半正定矩阵? 可以使用特征值

    参考视频:https://www.bilibili.com/video/BV1Vg41197ew/?vd_source=7a1a0bc74158c6993c7355c5490fc600 参考资料(半正定矩阵的定义):https://baike.baidu.com/item/%E5%8D%8A%E6%AD%A3%E5%AE%9A%E7%9F%A9%E9%98%B5/2152711?fr=ge_ala 看看半正定矩阵的定义: 正定矩阵是 0,半正定矩阵是 = 0 根据定义来看,半正定矩阵也有 “实

    2024年02月22日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包