三维人脸实践:基于Face3D的人脸生成、渲染与三维重建 <一>

这篇具有很好参考价值的文章主要介绍了三维人脸实践:基于Face3D的人脸生成、渲染与三维重建 <一>。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

face3d: Python tools for processing 3D face

git code: https://github.com/yfeng95/face3d
paper list: PaperWithCode

该方法广泛用于基于三维人脸关键点的人脸生成、属性检测(如位姿、深度、PNCC等),能够快速实现人脸建模与渲染。推荐!!!



相机坐标下的人脸变换
face3d,AI & Computer Vision,3d,重构,python
face3d,AI & Computer Vision,3d,重构,python

光照渲染
face3d,AI & Computer Vision,3d,重构,python
face3d,AI & Computer Vision,3d,重构,python
3DMM模型
face3d,AI & Computer Vision,3d,重构,python
face3d,AI & Computer Vision,3d,重构,python

提示:对于初学者来说,作者强烈建议按照这个顺序来运行样例,然后再看mesh_numpy中的代码和读每个文件中的注释。

一、介绍

这里尝试去实现有关三维人脸的一些基础功能,如处理网格数据mesh data、基于morphable model的人脸生成,基于单张人脸图片及其关键点的三维人脸重构,带有不同光照效果的人脸渲染等操作。
该工程大部分代码基于python,但有些功能如rasterization使用C++实现循环渲染会快很多,并使用Cython编译供python环境使用,该工具轻量而运行快。

1.1 目录

三维网络数据,是最流行的三维人脸表征方法;3DMM模型广泛用于产生和重构三维人脸。

# Since triangle mesh is the most popular representation of 3D face, 
# the main part is mesh processing.
mesh/             # written in python and c++
|  cython/               # c++ files, use cython to compile 
|  io.py                 # read & write obj
|  vis.py                # plot mesh
|  transform.py          # transform mesh & estimate matrix
|  light.py              # add light & estimate light(to do)
|  render.py             # obj to image using rasterization render

mesh_numpy/      # the same with mesh/, with each part written in numpy
                 # slow but easy to learn and modify

# 3DMM is one of the most popular methods to generate & reconstruct 3D face.
morphable_model/
|  morphable_model.py    # morphable model class: generate & fit
|  fit.py                # estimate shape&expression parameters. 3dmm fitting.
|  load.py               # load 3dmm data

1.2 构建

1.2.1 预安装库

Python 2 or Python 3
Python packages:
	numpy
	skimage (for reading&writing image)
	scipy (for loading mat)
	matplotlib (for show)
	Cython (for compiling c++ file)

%可参考pip3命令行下载国内源:
pip3 install numpy -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install scikit-image -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install scipy -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install matplotlib -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip3 install Cython -i  https://pypi.tuna.tsinghua.edu.cn/simple

1.3 新建工程

1.3.1 源码

git clone https://github.com/YadiraF/face3d
cd face3d

1.3.2 编译C++文件为.so文件,用于python;如果使用numpy版本,则忽略此步。

cd face3d/mesh/cython
python setup.py build_ext -i 

1.3.3 准备BFM数据(如果不使用3dmm可跳过此步)

下载原始的BFM模型

链接:https://faces.dmi.unibas.ch/bfm/main.php?nav=1-2&id=downloads
face3d,AI & Computer Vision,3d,重构,python
将所有框都勾上,填写对应的信息后会收到一个下载link,将下载后的文件拷贝:

copy 01_MorphabelModel.mat to raw/
下载额外的BFM信息:

链接:3DFFA
下载【face profiling】和【3DFFA】
链接:HPEN
下载HPEN
将下载好的三个压缩包解压,分别在里面找到如下文件:

model_info.mat Model_Expression.mat Model_face_contour_trimed.mat  Model_tri_mouth.mat Modelplus_nose_hole.mat Modelplus_parallel.mat vertex_code.mat

然后在face3d/examples/Data/BFM目录下新建一个文件夹3ddfa,将上述文件拷贝进去。
3DDFA(Face Alignment Across Large Poses: A 3D Solution) HFPE(High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild)

下载STN中的UV坐标

链接:BFM_UV
点击download下载后解压,在face3d/examples/Data/BFM目录下新建一个文件夹stn,再将BFM_UV.mat复制到stn/

1.3.4 生产BFM模型

在BFM目录下创建Out文件夹
运行Matlab中的generate.m,产生的文件将会保存在 Out/
提示:一些空文件夹可能需要通过mkdir创建

1.4 运行pipeline例子

examples使用cython版本,如果使用numpy,将mesh替换为mesh_numpy即可

cd examples
python 1_pipeline.py 

如果得到如下输出,并且在pipeline下有生产的照片说明运行成功
face3d,AI & Computer Vision,3d,重构,python

2 pipeline源码解读

提示:为了方便理解,源码解读可能会使用numpy版本;而示例使用的是cython版本。

Pipeline目的:将3D目标转化为2D图像
这里通过调用BFM提供的相关参数3DMM(平均人脸模型,形状,表情)来产生三维人脸模型,并将三维人脸模型转化为平面图像。<\font>

2.0导入相关库

''' Simple example of pipeline
3D obj(process) --> 2d image
'''
import os, sys
import numpy as np
import scipy.io as sio
from skimage import io
from time import time
import matplotlib.pyplot as plt

sys.path.append('..')
import face3d
from face3d import mesh

2.1 加载网格数据(即mesh data)

网格数据包含:顶点,三角网格数据,颜色(可选),纹理(可选)。这里使用颜色来表征人脸面部的纹理

# ------------------------------ 1. load mesh data
# -- mesh data consists of: vertices, triangles, color(optinal), texture(optional)
# -- here use colors to represent the texture of face surface
C = sio.loadmat('Data/example1.mat')
vertices = C['vertices']; colors = C['colors']; triangles = C['triangles']
colors = colors/np.max(colors)

这里示例的网格数据来自.mat文件,分别获取其中的vertices、color和triangles数据,并将颜色归一化。
face3d,AI &amp; Computer Vision,3d,重构,python

2.2 变换顶点(vertices)位置

改变网格对象在世界坐标系中的位置。三维物体的变换方式有:缩放(scale)、旋转、平移等操作。这里在y通道上设置scale尺度为180,旋转30°,原地平移。

# ------------------------------ 2. modify vertices(transformation. change position of obj)
# -- change the position of mesh object in world space
# scale. target size=180 for example
s = 180/(np.max(vertices[:,1]) - np.min(vertices[:,1]))
# rotate 30 degree for example
R = mesh.transform.angle2matrix([0, 30, 0]) 
# no translation. center of obj:[0,0]
t = [0, 0, 0]
transformed_vertices = mesh.transform.similarity_transform(vertices, s, R, t)

其中,angle2matrix的源码如下:

def angle2matrix(angles):
    ''' get rotation matrix from three rotation angles(degree). right-handed.
    Args:
        angles: [3,]. x, y, z angles
        x: pitch. positive for looking down.
        y: yaw. positive for looking left. 
        z: roll. positive for tilting head right. 
    Returns:
        R: [3, 3]. rotation matrix.
    '''
    x, y, z = np.deg2rad(angles[0]), np.deg2rad(angles[1]), np.deg2rad(angles[2])
    # x
    Rx=np.array([[1,      0,       0],
                 [0, cos(x),  -sin(x)],
                 [0, sin(x),   cos(x)]])
    # y
    Ry=np.array([[ cos(y), 0, sin(y)],
                 [      0, 1,      0],
                 [-sin(y), 0, cos(y)]])
    # z
    Rz=np.array([[cos(z), -sin(z), 0],
                 [sin(z),  cos(z), 0],
                 [     0,       0, 1]])
    
    R=Rz.dot(Ry.dot(Rx))
    return R.astype(np.float32)

其作用是根据输入的角度生产旋转矩阵。
x:pitch 倾斜。正,向下看。
y: yaw 偏转。正,向左看。
z: roll 滚动。正,表示向右倾斜头部。

similarity_transform 的源码如下:

def similarity_transform(vertices, s, R, t3d):
    ''' similarity transform. dof = 7.
    3D: s*R.dot(X) + t
    Homo: M = [[sR, t],[0^T, 1]].  M.dot(X)
    Args:(float32)
        vertices: [nver, 3]. 
        s: [1,]. scale factor.
        R: [3,3]. rotation matrix.
        t3d: [3,]. 3d translation vector.
    Returns:
        transformed vertices: [nver, 3]
    '''
    t3d = np.squeeze(np.array(t3d, dtype = np.float32))
    transformed_vertices = s * vertices.dot(R.T) + t3d[np.newaxis, :]

    return transformed_vertices

输入三维顶点、缩放因子s、旋转角R和平移向量t3d,即可得到变换后的新坐标

2.3 修改颜色/纹理(添加光照)

添加点光源。光源位置在世界坐标系中定义

# ------------------------------ 3. modify colors/texture(add light)
# -- add point lights. light positions are defined in world space
# set lights
light_positions = np.array([[-128, -128, 300]])
light_intensities = np.array([[1, 1, 1]])
lit_colors = mesh.light.add_light(transformed_vertices, triangles, colors, light_positions, light_intensities)

其中,mesh.light.add_light定义如下

def add_light(vertices, triangles, colors, light_positions = 0, light_intensities = 0):
    ''' Gouraud shading. add point lights.
    In 3d face, usually assume:
    1. The surface of face is Lambertian(reflect only the low frequencies of lighting)
    2. Lighting can be an arbitrary combination of point sources
    3. No specular (unless skin is oil, 23333)

    Ref: https://cs184.eecs.berkeley.edu/lecture/pipeline    
    Args:
        vertices: [nver, 3]
        triangles: [ntri, 3]
        light_positions: [nlight, 3] 
        light_intensities: [nlight, 3]
    Returns:
        lit_colors: [nver, 3]
    '''
    nver = vertices.shape[0]
    normals = get_normal(vertices, triangles) # [nver, 3]

    # ambient
    # La = ka*Ia

    # diffuse
    # Ld = kd*(I/r^2)max(0, nxl)
    direction_to_lights = vertices[np.newaxis, :, :] - light_positions[:, np.newaxis, :] # [nlight, nver, 3]
    direction_to_lights_n = np.sqrt(np.sum(direction_to_lights**2, axis = 2)) # [nlight, nver]
    direction_to_lights = direction_to_lights/direction_to_lights_n[:, :, np.newaxis]
    normals_dot_lights = normals[np.newaxis, :, :]*direction_to_lights # [nlight, nver, 3]
    normals_dot_lights = np.sum(normals_dot_lights, axis = 2) # [nlight, nver]
    diffuse_output = colors[np.newaxis, :, :]*normals_dot_lights[:, :, np.newaxis]*light_intensities[:, np.newaxis, :]
    diffuse_output = np.sum(diffuse_output, axis = 0) # [nver, 3]
    
    # specular
    # h = (v + l)/(|v + l|) bisector
    # Ls = ks*(I/r^2)max(0, nxh)^p
    # increasing p narrows the reflectionlob

    lit_colors = diffuse_output # only diffuse part here.
    lit_colors = np.minimum(np.maximum(lit_colors, 0), 1)
    return lit_colors

Gouraud 着色法:是用于网格中插值的着色方法,可实现边缘的连续变化。在三维人脸中,通常由以下假设:
1、人脸表面是Lambertian,即朗博表面,只会反射低频的光
2、光照可以是点光源的任意组合。
3、无镜面反射。
这些参考了https://cs184.eecs.berkeley.edu/lecture/pipeline。但是这个网站好像挂掉了
get_normal函数在源码中另有定义,这里不再赘述。
输入的参数有:顶点坐标、三角网格数据、光源位置、光线强度。经过运算后输出加入点光源后的颜色数据。这里,如果没有相关知识,默认拿来使用即可。

2.4 坐标系变换:从世界坐标系到相机坐标系(映射,改变相机位置)

将对象从世界坐标系转换为相机坐标系,即观察者角度。如果使用标准相机,可忽略。

# ------------------------------ 4. modify vertices(projection. change position of camera)
# -- transform object from world space to camera space(what the world is in the eye of observer). 
# -- omit if using standard camera
camera_vertices = mesh.transform.lookat_camera(transformed_vertices, eye = [0, 0, 200], at = np.array([0, 0, 0]), up = None)
# -- project object from 3d world space into 2d image plane. orthographic or perspective projection
projected_vertices = mesh.transform.orthographic_project(camera_vertices)

其中,相机坐标系lookat_camera的定义如下:

def normalize(x):
    epsilon = 1e-12
    norm = np.sqrt(np.sum(x**2, axis = 0))
    norm = np.maximum(norm, epsilon)
    return x/norm
def lookat_camera(vertices, eye, at = None, up = None):
    """ 'look at' transformation: from world space to camera space
    standard camera space: 
        camera located at the origin. 
        looking down negative z-axis. 
        vertical vector is y-axis.
    Xcam = R(X - C)
    Homo: [[R, -RC], [0, 1]]
    Args:
      vertices: [nver, 3] 
      eye: [3,] the XYZ world space position of the camera.5
      at: [3,] a position along the center of the camera's gaze.
      up: [3,] up direction 
    Returns:
      transformed_vertices: [nver, 3]
    """
    if at is None:
      at = np.array([0, 0, 0], np.float32)
    if up is None:
      up = np.array([0, 1, 0], np.float32)

    eye = np.array(eye).astype(np.float32)
    at = np.array(at).astype(np.float32)
    z_aixs = -normalize(at - eye) # look forward
    x_aixs = normalize(np.cross(up, z_aixs)) # look right
    y_axis = np.cross(z_aixs, x_aixs) # look up

    R = np.stack((x_aixs, y_axis, z_aixs))#, axis = 0) # 3 x 3
    transformed_vertices = vertices - eye # translation
    transformed_vertices = transformed_vertices.dot(R.T) # rotation
    return transformed_vertices

标准相机空间设定为:相机在原点;向下看,是负Z轴;垂直向量为Y轴。
输入参数为:顶点,摄像机在世界坐标系的位置,沿着相机视线中心的位置(默认为[0,0,0]),向上方向(默认为(0,1,0))
根据输入,计算出旋转矩R,并通过Xcam=R(X-C)计算出新顶点的位置。

2.5 转化为2D图像

设置图像宽高为256

# ------------------------------ 5. render(to 2d image)
# set h, w of rendering
h = w = 256
# change to image coords for rendering
image_vertices = mesh.transform.to_image(projected_vertices, h, w)
# render 
rendering =  mesh.render.render_colors(image_vertices, triangles, lit_colors, h, w)

mesh.transform.to_image部分的源码如下:

def to_image(vertices, h, w, is_perspective = False):
    ''' change vertices to image coord system
    3d system: XYZ, center(0, 0, 0)
    2d image: x(u), y(v). center(w/2, h/2), flip y-axis. 
    Args:
        vertices: [nver, 3]
        h: height of the rendering
        w : width of the rendering
    Returns:
        projected_vertices: [nver, 3]  
    '''
    image_vertices = vertices.copy()
    if is_perspective:
        # if perspective, the projected vertices are normalized to [-1, 1]. so change it to image size first.
        image_vertices[:,0] = image_vertices[:,0]*w/2
        image_vertices[:,1] = image_vertices[:,1]*h/2
    # move to center of image
    image_vertices[:,0] = image_vertices[:,0] + w/2
    image_vertices[:,1] = image_vertices[:,1] + h/2
    # flip vertices along y-axis.
    image_vertices[:,1] = h - image_vertices[:,1] - 1
    return image_vertices

输入参数为:顶点坐标、图像宽高、透视选项(默认为Fals),通过计算得到二维顶点坐标。

mesh.render.render_colors的源码如下:(此为numpy版本)

def render_colors(vertices, triangles, colors, h, w, c = 3):
    ''' render mesh with colors
    Args:
        vertices: [nver, 3]
        triangles: [ntri, 3] 
        colors: [nver, 3]
        h: height
        w: width    
    Returns:
        image: [h, w, c]. 
    '''
    assert vertices.shape[0] == colors.shape[0]
    # initial 
    image = np.zeros((h, w, c))
    depth_buffer = np.zeros([h, w]) - 999999.

    for i in range(triangles.shape[0]):
        tri = triangles[i, :] # 3 vertex indices
        # the inner bounding box
        umin = max(int(np.ceil(np.min(vertices[tri, 0]))), 0)
        umax = min(int(np.floor(np.max(vertices[tri, 0]))), w-1)
        vmin = max(int(np.ceil(np.min(vertices[tri, 1]))), 0)
        vmax = min(int(np.floor(np.max(vertices[tri, 1]))), h-1)

        if umax<umin or vmax<vmin:
            continue

        for u in range(umin, umax+1):
            for v in range(vmin, vmax+1):
                if not isPointInTri([u,v], vertices[tri, :2]): 
                    continue
                w0, w1, w2 = get_point_weight([u, v], vertices[tri, :2])
                point_depth = w0*vertices[tri[0], 2] + w1*vertices[tri[1], 2] + w2*vertices[tri[2], 2]

                if point_depth > depth_buffer[v, u]:
                    depth_buffer[v, u] = point_depth
                    image[v, u, :] = w0*colors[tri[0], :] + w1*colors[tri[1], :] + w2*colors[tri[2], :]
    return image

输入为顶点坐标、三角网格数据、网格颜色数据以及目标图片的长宽。
输出为目标的带纹理的二维图像数据。

# ---- show rendering
# plt.imshow(rendering)
# plt.show()
save_folder = 'results/pipeline'
if not os.path.exists(save_folder):
    os.mkdir(save_folder)
io.imsave('{}/rendering.jpg'.format(save_folder), rendering)
# ---- show mesh
# mesh.vis.plot_mesh(camera_vertices, triangles)
# plt.show()

这里展示二维图片效果:
face3d,AI &amp; Computer Vision,3d,重构,python
也可展示出相加空间下的模型:
face3d,AI &amp; Computer Vision,3d,重构,python


总结

这里主要介绍通过3DMM预定义好的模型,实现线性的人脸编辑与生成。文章来源地址https://www.toymoban.com/news/detail-810017.html

到了这里,关于三维人脸实践:基于Face3D的人脸生成、渲染与三维重建 <一>的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【三维重建】3D Gaussian Splatting:实时的神经场渲染

    辐射场方法 改变了多张照片或视频主导的场景新视角合成。 Gaussian Splatting引入了三个关键元素 ,在保持有竞争力的训练时间的同时实现最先进的视觉质量,重要的是 允许在1080p分辨率下实现高质量的实时(≥30 fps)的新视图合成 。 1.首先, 从摄像机校准过程中产生的稀疏

    2024年02月08日
    浏览(46)
  • 基于Face++,使用Spring Boot+Elemnet-UI实现人脸识别登录。

    上一篇文章只是封装了人脸检测的一些工具类,要实现刷脸登录,我们首先得思考一个问题,就是如何将我们的人脸和登录账户信息进行绑定,让它通过人脸就能识别到当前登录的账户是谁的账户。 这个问题我们可以这样解决,我浏览Face++的官网发现它还有人脸比对的一个

    2024年02月04日
    浏览(46)
  • OSG三维渲染引擎编程学习之八十八:“第八章:OSG文字” 之 “8.7 osgText3D”

    目录   第八章 OSG文字 8.7 osgText3D 8.7.1 osgText3D介绍 8.7.2 osgText3D实例       适当的文字信息对于显示场景信息是非常重要的。在OSG中,osgText提供了向场景中添加文字的强大功能,由于有第三方插件FreeType的支撑,可完全支持TrueType字体。       TrueType是由AppleComputer公司和Micro

    2024年02月13日
    浏览(49)
  • 【三维生成】Make-it-3D:diffusion+NeRF从单张图像生成高保真三维物体(上交&微软)

    题目 : Make-It-3D: High-Fidelity 3D Creation from A Single Image with Diffusion Prior Paper : https://arxiv.org/pdf/2303.14184.pdf Code : https://make-it-3d.github.io/ 在本文中,研究者的目标是: 从一个真实或人工生成的单张图像中创建高保真度的3D内容 。这将为艺术表达和创意开辟新的途径,例如为像Stable

    2024年02月13日
    浏览(46)
  • 一句话生成 3D 人脸资产|ChatAvatar 角色生成 AI 登陆 Cocos

    近几个月以来,AIGC 一路高歌猛进,让我们见证了一场行业革命。 然而 AIGC 在 3D 资产领域却仍是业内的难题,少有突破。 小编今天给大家推荐一个 3D 角色 AIGC 利器 ChatAvatar 。它可以算是 3D AIGC 领域的一匹黑马,走在了领域的前沿。 ChatAvatar 团队为 Cocos Creator 制作了专门的插

    2024年02月03日
    浏览(54)
  • 【3D生成与重建】SSDNeRF:单阶段Diffusion NeRF的三维生成和重建

    题目 :Single-Stage Diffusion NeRF: A Unified Approach to 3D Generation and Reconstruction 论文 :https://arxiv.org/pdf/2304.06714.pdf 任务 :无条件3D生成(如从噪音中,生成不同的车等)、单视图3D生成 机构 :Hansheng Chen,1,* Jiatao Gu,2 Anpei Chen, 同济、苹果、加利福尼亚大学 代码 :https://github.com/Lakon

    2024年02月02日
    浏览(48)
  • 【三维重建】DreamGaussian:高斯splatting的单视图3D内容生成(原理+代码)

    项目主页:https://dreamgaussian.github.io/ (包含论文和代码) 提示:以下是本篇文章正文内容,下面案例可供参考 常用的3D内容创建方式,主要是 利用基于优化的通过分数蒸馏采样(SDS)进行的3D生成 。该方法每个样本优化较慢,很难实际应用。本文提出了DreamGaussian,兼顾效率

    2024年02月06日
    浏览(52)
  • face_recognition人脸识别与人脸检测

    1、安装face_recognition库 face_recognition库的人脸识别是基于业内领先的C++开源库dlib中的深度学习模型,安装face_recognition库的同时会一并安装dlib深度学习框架。 2、face_recognition库的使用 1)load_image_file加载要识别的人脸图像 这个方法主要是用于加载要识别的人脸图像,返回的数据

    2024年02月13日
    浏览(42)
  • 人脸识别 Face Recognition 入门

    找论文搭配 Sci-Hub 食用更佳 💪 Sci-Hub 实时更新 : https://tool.yovisun.com/scihub/ 公益科研通文献求助:https://www.ablesci.com/ 人脸识别流程:检测、对齐、(活体)、预处理、提取特征(表示)、人脸识别(验证) 传统方法试图通过一两层表示来识别人脸,例如过滤响应、特征直方图

    2024年02月04日
    浏览(38)
  • 人脸识别(Java+ Face++实现)

    Face++的核心技术是基于深度学习的人脸识别技术,其算法在准确率和速度方面都处于领先地位。该公司的产品和服务包括人脸识别SDK、人脸识别API、人脸比对服务、人脸检测服务、活体检测服务等。这些产品和服务广泛应用于金融、公安、零售、物流等领域。并且,Face++提供

    2024年02月07日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包