LLM:Scaling Laws for Neural Language Models (上)

这篇具有很好参考价值的文章主要介绍了LLM:Scaling Laws for Neural Language Models (上)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

论文:https://arxiv.org/pdf/2001.08361.pdf

发表:2020

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

摘要
1:损失与模型大小、数据集大小以及训练所用计算量成比例,其中一些趋势跨越了七个量级以上。

2:网络宽度或深度等其他架构细节在很大范围内影响较小。
3:模型/数据集大小和训练速度与模型大小的依赖关系由简单的方程描述。这些关系使我们能够确定在固定的计算预算下的最优资源分配。

4:更大的模型显著地更具样本效率,因此,在相对较小的数据量上训练非常大的模型并在收敛之前显著地停止。

发现

1:LLM模型的性能主要取决于scale,而不是model shape

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

模型性能强烈依赖于规模,这由三个因素组成:模型参数数量N(不包括嵌入)、数据集大小D和用于训练的计算C的数量。在合理的限度内,性能对其他架构超参数(例如深度与宽度的比较)的依赖非常弱。(第3节)

2:平滑的幂法则

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

当不受其他两个因素瓶颈的限制时,性能与三个规模因子N、D、C之间存在着强相关的幂关系三个因素的趋势跨度超过六个量级(参见图1)。我们在上端没有观察到偏离这些趋势的迹象,尽管性能最终必须在达到零损失之前趋于平稳。(第3节) 

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

当我们增加模型大小N、数据规模D和训练时的计算量C,语言模型的性能会平稳提高为了获得最佳性能,这三个因素需要同时缩放。实验表明:在其余两个参数不做限制条件下,测试Loss与另一个因素上都表现出幂关系。 

3:过拟合的普遍性

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

同步增加模型大小N和数据规模D,模型性能就会显著地提高。但是,如果我们只固定N、D中的一个,而增加另一个规模,就会出现回报递减的情况。性能的惩罚可以预测地依赖于,这意味着我们每次将模型规模N增加8倍,只需将数据规模D增加5倍就可以避免受到惩罚(第4节)

4:训练的普遍性

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

训练曲线遵循可预测的幂律,其参数大约独立于模型的大小。通过外推训练曲线的早期部分,我们可以大致预测如果我们训练更长时间会达到的损失。(第5节)

5:迁移能力随着测试性能的提高而提高

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

当我们在与模型训练数据分布不同的文本上评估模型时,结果与在训练验证集上的结果有强烈的相关性,但损失的偏移约为常数 - 换句话说,转移到不同的分布会产生一个常数的惩罚,但除此之外,性能大致与在训练集上的性能一致。 (第3.2.2节)

6:样本效率

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

大型模型比小型模式更具有样本效率,使用更少的优化步骤(图2)和更少的数据点(图4)就可以达到相同的性能水平。

紫色->绿色->黄色:表示模型的参数量N逐渐增大。

下图(左):收敛到相同水平(横线),大模型(黄色)需要的token数更少,即效率更高。

下图(右):收敛到相同水平(横线),小模型(黄色)耗时(PF-days)更少。

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

这里横轴单位为PF-days: 如果每秒钟可进行1015次运算,就是1 peta flops,那么一天的运算就是1015×24×3600=8.64×1019,这个算力消耗被称为1个petaflop/s-day。 

7:收敛效率低下

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

固定计算量C,但不对模型规模N或可用数据规模D施加限制时,我们通过训练非常大的模型并在远未达到收敛的情况下停止(参见图3)来达到最佳性能。因此,最大化计算效率的训练将比基于训练小模型到收敛的预期更具有样本效率。数据要求随着的训练计算而增长非常缓慢。(第6节) 

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM对于计算效率最优的训练:大部分的计算能力应投放到模型尺寸增加上,小部分投入到数据增加上。在数据增加方面:主要是增加batch size,迭代steps基本可以忽略。从Fig3中可以看出:

model size : Batch size : serial steps = 1,000,000 : 100 : 10

 8:最佳batch size 

 这些模型的理想批处理大小大致是损失的幂,并且可以通过测量梯度噪声尺度来确定。对于我们可以训练的最大模型,收敛时的理想批处理大 小约为 1-2 百万个token。(第 5.1 节)

 2.2 训练流程

使用 Adam 优化器对模型进行固定 2.5×105 步的训练,批大小为 512 个序列,序列包含 1024 个词元。由于内存限制,我们使用 Adafactor对我们最大的模型(超过 1B 参数)进行训练。我们尝试了各种学习率和调度,如附录 D.6 中所述。我们发现收敛结果很大程度上与学习率调度无关。除非另有说明,我们数据中包含的所有训练运行都使用了一个学习率调度,该调度包括 3000 步线性预热,然后是余弦衰减到零

3.1 估计Transformer形状和超参数独立性

当我们保持总非嵌入参数计数 N 固定时,Transformer的性能对 nlayer 、 nheads 和 dff 等形状参数依赖性非常弱。

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

3.2 非嵌入参数计数 N 的性能 

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

左图:当我们包括嵌入参数时,性能似乎除了参数数量外还强烈依赖于层数。

右图:当我们排除嵌入参数时,不同深度的模型的性能收敛到一个趋势。只有少于2层的模型或具有极端的深度宽度比的模型明显偏离趋势。 

LLM:Scaling Laws for Neural Language Models (上),LLM,语言模型,人工智能,LLM

在WebText2数据集上训练的模型,在其他各种数据集上的测试损失也是 N 的幂律,且幂律几乎相同,如上图所示。文章来源地址https://www.toymoban.com/news/detail-810073.html

到了这里,关于LLM:Scaling Laws for Neural Language Models (上)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LLMs 缩放指令模型Scaling instruct models FLAN(Fine-tuned LAnguage Net,微调语言网络)

    本论文介绍了FLAN(Fine-tuned LAnguage Net,微调语言网络),一种指导微调方法,并展示了其应用结果。该研究证明,通过在1836个任务上微调540B PaLM模型,同时整合Chain-of-Thought Reasoning(思维链推理)数据,FLAN在泛化、人类可用性和零射推理方面相对于基础模型取得了改进。论文

    2024年02月11日
    浏览(36)
  • 大型语言模型(LLM, Large Language Models)基模和 Chat 模型之间的区别

    最近看大模型相关的知识,有看到大模型都有基础模型(base)和对话模型(chat),不太清楚什么时候用到基础模型,什么时候用到对话模型,故有此文。 通过了解,最简单的概述就是基于基础模型会训练出一个对话(Chat)模型,对话模型主要用于对话场景,基础模型主要做

    2024年02月21日
    浏览(39)
  • LLM预训练大型语言模型Pre-training large language models

    在上一个视频中,您被介绍到了生成性AI项目的生命周期。 如您所见,在您开始启动您的生成性AI应用的有趣部分之前,有几个步骤需要完成。一旦您确定了您的用例范围,并确定了您需要LLM在您的应用程序中的工作方式,您的下一步就是选择一个要使用的模型。 您首先的选

    2024年02月11日
    浏览(46)
  • Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models ----论文阅读

    Vary 的代码和模型均已开源,还给出了供大家试玩的网页 demo。感兴趣的小伙伴可以去试试 主页:https://varybase.github.io/ 部分内容参考:https://mp.weixin.qq.com/s/Sg_yHAVVN-yAYT61SNKvCA 官网:https://openai.com/research/clip (要了解的建议看这个,篇幅少点,论文中大量篇幅是介绍实验的) 论

    2024年02月03日
    浏览(51)
  • 论文精读:Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models

    Status: Reading Author: Chunrui Han, Haoran Wei, Jianjian Sun, Jinrong Yang, Jinyue Chen, Liang Zhao, Lingyu Kong, Xiangyu Zhang, Zheng Ge Institution: 中国科学院大学, 华中科技大学, 旷视科技(MEGVII Technology) Publisher: arXiv Publishing/Release Date: December 11, 2023 Score /5: ⭐️⭐️⭐️ Type: Paper Link: https://arxiv.org/abs/

    2024年02月01日
    浏览(87)
  • (详细版)Vary: Scaling up the Vision Vocabulary for Large Vision-Language Models

    Haoran Wei1∗, Lingyu Kong2∗, Jinyue Chen2, Liang Zhao1, Zheng Ge1†, Jinrong Yang3, Jianjian Sun1, Chunrui Han1, Xiangyu Zhang1 1MEGVII Technology 2University of Chinese Academy of Sciences 3Huazhong University of Science and Technology arXiv 2023.12.11 背景: 随着大规模视觉-语言模型(LVLMs)的兴起,它们在多个领域展现出了卓

    2024年02月02日
    浏览(69)
  • 序列模型(4)—— Scaling Laws

    本文介绍 LLM 训练过程中重要的 Scaling Laws,这是一个 经验规律 ,指出了 固定训练成本(总计算量FLOPs) C C C 时,如何调配模型规模(参数量) N N N 和训练 Token 数据量 D D D ,才能实现最高的效率 。利用 Scaling Laws,我们可以利用较小模型的训练经验预测更大模型的性能表现

    2024年02月01日
    浏览(31)
  • 【AI人工智能】用于代码生成的大型语言模型 Large Language Models for Code Generation

      目录 Large Language Models for Code Generation – Part 1用于代码生成的大型语言模型——第 1 部分 Introduction

    2024年02月08日
    浏览(72)
  • 大模型 LLM 综述, A Survey of Large Language Models

    一般认为NLP领域的大模型=10 Billion参数(也有人认为是6B、7B, 工业界用, 开始展现涌现能力); 经典大模型有GPT-3、BLOOM、Flan-T5、GPT-NeoX、OPT、GLM-130B、PaLM、LaMDA、LLaMA等; 大模型时间线, 图来自A Survey of Large Language Models,下同。 2.1 涌现 涌现, emerge(abilities), 即一般指在大模型中出现

    2024年02月08日
    浏览(59)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包