分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测
分类效果
基本描述
KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测(可用于故障诊断等方面)MATLAB代码
❶含SVM、BWO-SVM、EBWO-SVM、KPCA-EBWO-SVM,四个模型的对比
❷两个改进策略:
准对立学习策略(QOBL)可提高收敛率,促进算法寻优。旋风觅食策略(CFS)用于加强传统BWO的开发阶段,使种群围绕最佳解决方案呈螺旋方向移动
❸可出分类效果图,迭代优化图,混淆矩阵
❹代码中文注释清晰,质量极高
❺赠送数据集,可以直接运行源程序。文章来源:https://www.toymoban.com/news/detail-810446.html
程序设计
- 完整程序和数据私信博主回复Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测。
%% 参数设置
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229文章来源地址https://www.toymoban.com/news/detail-810446.html
到了这里,关于分类预测 | Matlab实现KPCA-EBWO-SVM分类预测,基于核主成分分析和改进的白鲸优化算法优化支持向量机分类预测的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!