OpenCV-Python(49):图像去噪

这篇具有很好参考价值的文章主要介绍了OpenCV-Python(49):图像去噪。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目标

  • 学习使用非局部平均值去噪算法去除图像中的噪音
  • 学习函数cv2.fastNlMeansDenoising()、cv2.fastNlMeansDenoisingColored等

原理

        在前面的章节中我们已经学习了很多图像平滑技术,比如高斯平滑、中值平滑等。当噪声比较小时,这些技术的效果都是很好的。在这些技术中我们选取像素周围一个小的邻域然后用高斯平均值或者中值平均值取代中心像素。简单来说,像素级别的噪声去除是限制在局部领域的。

        噪声有一个性质。我们认为噪声是平均值唯一的随机变量。考虑一个带噪声的像素点p = p0 + n,其中p0 为像素的真实值,n 为这个像素的噪声。我们可以从不同图片中选取大量的相同像素(N)然后计算平均值。理想情况下我们会得到p = p0。因为噪声的平均值为0。

        通过简单的设置我们就可以去除这些噪声。将一个静态摄像头固定在一个位置连续拍摄几秒。这样我们就会得到足够多的图像帧或者同一场景的大量图像。写一段代码求求解些帧的平均值(这对你来说应该是小菜一碟)。将最终结果与第一帧图像对比一下。你会发现噪声减小了。不幸的是,种简单的方法对于摄像头和运动动场景并不总是适用。大多数情况下我们只有一张导游带有噪音的图像。

        想法很简单,我们需要一组相似的图片,通过取平均值的方法可以去除噪音。考虑图像中一个小的窗口(5x5)有很大可能图像中的其它区域也存在一个相似的窗口。有时这个相似窗口就在邻域周围。如果我们找到这些相似的窗口并取他们的平均值会怎样呢?对于特定的窗口这样做挺好的。如下图所示:

OpenCV-Python(49):图像去噪,opencv-python,opencv,图像去噪,计算摄影学,非局部去噪

        上图中的蓝色窗口看起来是相似的。绿色窗口看看来也是相似的。所以我们可以选取包含目标像素的一个小窗口,然后在图像中搜索相似的窗口,最后求取所有窗口的平均值,并用这个值取代目标像素的值。这种方法就是非局部平均值去噪。与我们以前学习的平滑技术相比,种算法要消耗更多的时间,但是结果很好。你可以在更多资源中找到更多的细节和在线演示。对于彩色图像首先要转换到CIELAB 颜色空间,然后对L 和AB 成分分别去噪。 

OpenCV中的图像去噪

OpenCV 提供了这种技术的四个变本。

  1. cv2.fastNlMeansDenoising() 使用对象为灰度图。
  2. cv2.fastNlMeansDenoisingColored() 使用对象为彩色图。
  3. cv2.fastNlMeansDenoisingMulti() 适用于短时的图像序列(灰度图像)
  4. cv2.fastNlMeansDenoisingColoredMulti() 适用于短时的图像序列(彩色图像)

        共同参数有:

  • h : 决定过滤器强度。h 值高可以很好的去除噪声,但也会把图像的细节抹去。(取10 的效果不错)
  •  hForColorComponents : 与h 相同,但使用与彩色图像。
  • templateWindowSize : 奇数。(推荐值为7)
  • searchWindowSize : 奇数。(推荐值为21)

        下面演示一下2、3的效果:

和上面提到的一样,cv2.fastNlMeansDenoisingColored()可以用来去除彩色图像的噪声。假设是高斯噪声􈙺:

import numpy as np
import cv2
from matplotlib import pyplot as plt

img = cv2.imread('die.png')
dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21)
plt.subplot(121),plt.imshow(img)
plt.subplot(122),plt.imshow(dst)
plt.show()

        下面是结果的放大图,我们的输入图像中含有方差为25 的噪声,下面是结果:

OpenCV-Python(49):图像去噪,opencv-python,opencv,图像去噪,计算摄影学,非局部去噪

        现在我们使用cv2.fastNlMeansDenoisingMulti() 对一段视频使用这个方法。第一个参数是一个噪声帧的列表。第二个参数imgtoDenoiseIndex 设定哪些帧需要去噪,我们可以传入一个帧的索引。第三个参数temporaWindowSize 可以设置用于去噪的相邻帧的数目,它应该是一个奇数。在这种情况下temporaWindowSize 帧的图像会用于去噪,中间的帧就是要去噪的帧。例如,我们传入5 帧图像,imgToDenoiseIndex = 2 和temporalWindowSize = 3。那么第一帧、第二帧、第三帧图像将将用于第二帧图像的去噪。下面我们来看一个例子:

import numpy as np
import cv2
from matplotlib import pyplot as plt

cap = cv2.VideoCapture('vtest.avi')
# create a list of first 5 frames
img = [cap.read()[1] for i in xrange(5)]
# convert all to grayscale
gray = [cv2.cvtColor(i, cv2.COLOR_BGR2GRAY) for i in img]
# convert all to float64
gray = [np.float64(i) for i in gray]
# create a noise of variance 25
noise = np.random.randn(*gray[1].shape)*10
# Add this noise to images
noisy = [i+noise for i in gray]
# Convert back to uint8
noisy = [np.uint8(np.clip(i,0,255)) for i in noisy]
# Denoise 3rd frame considering all the 5 frames
dst = cv2.fastNlMeansDenoisingMulti(noisy, 2, 5, None, 4, 7, 35)
plt.subplot(131),plt.imshow(gray[2],'gray')
plt.subplot(132),plt.imshow(noisy[2],'gray')
plt.subplot(133),plt.imshow(dst,'gray')
plt.show()

OpenCV-Python(49):图像去噪,opencv-python,opencv,图像去噪,计算摄影学,非局部去噪

        计算消耗了相当可观的时间。第一张图是原始图像,第二个是带噪音量图像,第三个是去噪之后的图像。 

 文章来源地址https://www.toymoban.com/news/detail-810677.html

 

到了这里,关于OpenCV-Python(49):图像去噪的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • OpenCV-Python中的图像基础操作

    首先读入一副图像: 获取像素值及修改的更好方法: img = cv2.imread(‘./resource/image/1.jpg’, cv2.IMREAD_COLOR) img.shape: 图像的形状(包括行数,列数,通道数的元组) img.size : 图像的像素数目 img.dtype :图像的数据类型 ROI(regionofinterest),感兴趣区域。机器视觉、图像处理中,从被

    2024年02月11日
    浏览(36)
  • opencv-python 将图像迷宫转为迷宫数组

    起因是我想做个自动走迷宫的外挂(其实是想做点实践),所以我需要在游戏中捕捉画面并自动寻路,然后再控制自动移动,此为第一部分:捕捉画面。 1.取得图像迷宫 2.处理图像 3.图像分割 4.生成数组 首先我们得捕捉屏幕画面,即获得迷宫图像,这里我是在steam上面找了一

    2024年02月07日
    浏览(45)
  • OpenCV-Python中的图像处理-图像直方图

    通过直方图你可以对整幅图像的灰度分布有一个整体的了解。直方图的 x 轴是灰度值( 0 到 255), y 轴是图片中具有同一个灰度的点的数目。 BINS:上面的直方图显示了每个灰度值对应的像素数。如果像素值为 0到255,你就需要 256 个数来显示上面的直方图。但是,如果你不需

    2024年02月12日
    浏览(59)
  • OpenCV-Python中的图像处理-视频分析

    学习使用 Meanshift 和 Camshift 算法在视频中找到并跟踪目标对象: Meanshift 算法的基本原理是和很简单的。假设我们有一堆点(比如直方 图反向投影得到的点),和一个小的圆形窗口,我们要完成的任务就是将这个窗 口移动到最大灰度密度处(或者是点最多的地方)。如下图所

    2024年02月12日
    浏览(51)
  • OpenCV-Python中的图像处理-霍夫变换

    霍夫(Hough)变换在检测各种形状的技术中非常流行,如果要检测的形状可以用数学表达式描述,就可以是使用霍夫变换检测它。即使要检测的形状存在一点破坏或者扭曲也是可以使用。 Hough直线变换,可以检测一张图像中的直线 cv2.HoughLines(image, rho, theta, threshold) return:返回值

    2024年02月12日
    浏览(44)
  • OpenCV-Python中的图像处理-模板匹配

    使用模板匹配可以在一幅图像中查找目标 函数: cv2.matchTemplate(), cv2.minMaxLoc() 模板匹配是用来在一副大图中搜寻查找模版图像位置的方法。 OpenCV 为我们提供了函数: cv2.matchTemplate()。和 2D 卷积一样,它也是用模板图像在输入图像(大图)上滑动,并在每一个位置对模板图像

    2024年02月12日
    浏览(42)
  • 基于OpenCV-Python的图像位置校正和版面分析

    使用opencv对图像进行操作,要求:(1)定位银行票据的四条边,然后旋正。(2)根据版面分析,分割出小写金额区域。 首先是对图像的校正 读取图片 对图片二值化 进行边缘检测 对边缘的进行霍夫曼变换 将变换结果从极坐标空间投影到笛卡尔坐标得到倾斜角 根据倾斜角对

    2024年01月19日
    浏览(42)
  • opencv-python[cv2]读取中文路径图像

    随着AI人工智能的不断发展,图像处理这门技术也越来越重要,很多学校本科都开启了图像处理这门课程,学习图像处理开发,自然就绕不开opencv-python[ cv2 ]这个由intel主导的开源库。 cv2 是指OpenCV的Python接口库。 OpenCV (Open Source Computer Vision Library)是一个开源的计算机视觉库

    2024年02月06日
    浏览(67)
  • OpenCV-Python中的图像处理-傅里叶变换

    傅里叶变换经常被用来分析不同滤波器的频率特性。我们可以使用 2D 离散傅里叶变换 (DFT) 分析图像的频域特性。实现 DFT 的一个快速算法被称为快速傅里叶变换( FFT)。 对于一个正弦信号:x (t) = A sin (2πft), 它的频率为 f,如果把这个信号转到它的频域表示,我们会在频率

    2024年02月12日
    浏览(41)
  • OpenCV-Python学习(10)—— OpenCV 图像二值化处理(cv.threshold)

    1. 学习目标 理解图像的分类,不同类型的图像的区别; 对图像进行二值化处理,对【 cv.threshold 】函数的理解。 2. 图像分类 2.1 不同类型图像说明 按照颜色对图像进行分类,可以分为二值图像、灰度图像和彩色图像。 二值图像: 只有黑色和白色两种颜色的图像。 每个像素

    2024年02月03日
    浏览(69)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包