-
问题定义: 确定需要解决的问题或目标,明确分析的方向和目的。
-
数据收集: 收集与问题相关的数据,可以包括从各种来源获取的结构化或非结构化数据。
-
数据清洗: 对收集到的数据进行清理,处理缺失值、异常值和重复值,确保数据质量。
-
数据探索(探索性数据分析 EDA): 探索数据的特征、分布、相关性等,通过可视化和统计方法深入了解数据。
-
特征工程: 对数据进行变换、组合或生成新特征,以提高模型性能或更好地反映问题的本质。
-
建模: 选择合适的模型,将数据划分为训练集和测试集,训练模型以解决问题。
-
模型评估: 评估模型的性能,使用合适的指标来衡量模型的准确性、精确度等。
-
模型优化: 根据评估结果对模型进行调整和优化,提高模型的性能。
-
结果解释和呈现: 将分析结果解释给非技术人员,以及通过可视化或报告形式呈现分析结果。文章来源:https://www.toymoban.com/news/detail-810828.html
-
部署和监控: 如果需要,将模型部署到生产环境,并定期监控模型的性能,确保它在实际应用中有效。文章来源地址https://www.toymoban.com/news/detail-810828.html
到了这里,关于数据分析完整流程一般包括哪几个环节/步骤的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!