数学建模day16-预测模型

这篇具有很好参考价值的文章主要介绍了数学建模day16-预测模型。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

        本讲首先将介绍灰色预测模型,然后将简要介绍神经网络在数据预测中的应用,在本讲的最
后,我将谈谈清风大佬对于数据预测的一些看法。        

注:本文源于数学建模学习交流相关公众号观看学习视频后所作

目录

灰色系统

GM(1,1)模型: Grey(Gray) Model

GM(1,1)原理

OLS原理介绍

完全多重共线性问题再探究

 再回到GM(1,1)原理

一阶微分方程

一阶齐次线性微分方程

一阶非齐次线性微分方程

再回到GM(1,1)原理

准指数规律的检验

发展系数与预测情形的探究

GM(1,1)模型的评价

GM(1,1)模型的检验

GM(1,1)模型的拓展

什么时候用灰色预测?

灰色预测的例题

预测的题目的一些小套路

Matlab代码

main.m

gm11.m

metabolism_gm11.m

new_gm11.m

整体理解

灰色预测运行结果

更换新的数据集1

更换新的数据集2

更换新的数据集3

BP神经网络预测——万金油

 神经网络的介绍

机器学习中的训练集,验证集和测试集

例题

例题1:辛烷值的预测

数据的导入

使用神经网络进行预测

关键的步骤

结果分析

保存结果

保存结果并对进行预测

例题2:神经网络在多输出中的运用

清风大佬对于预测模型的看法

加入符合背景的变量

一篇不错的论文

本节作业1:画流程图

结语


灰色系统

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

        灰色预测是对既含有已知信息又含有不确定信息的系统进行预测,就是对在一定范围内变化的、与时间有关的灰色过程进行预测。
        灰色预测对原始数据进行生成处理来寻找系统变动的规律,并生成有较强规律性的数据序列,然后建立相应的微分方程模型,从而预测事物未来发展趋势的状况。


GM(1,1)模型: Grey(Gray) Model

        GM(1,1)是使用原始的离散非负数据列,通过一次累加生成削弱随机性的较有规律的新的离散数据列,然后通过建立微分方程模型,得到在离散点处的解经过累减生成的原始数据的近似估计值,从而预测原始数据的后续发展。

(我们在此只探究GM(1,1)模型,第一个‘1’表示微分方程是一阶的,后面的‘1’表示只有一个变量

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

GM(1,1)原理

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模


OLS原理介绍

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

矩阵求导:常用的向量矩阵求导公式_向量求导法则-CSDN博客


 

完全多重共线性问题再探究

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

 再回到GM(1,1)原理

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模


一阶微分方程

一阶齐次线性微分方程

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

一阶非齐次线性微分方程

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

参考:同济大学《高等数学上册》第七版315页和334页


再回到GM(1,1)原理

数学建模day16-预测模型,数学建模,AI学习之路,数学建模


准指数规律的检验  

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

刘思峰,谢乃明,等. 2010. 灰色系统理论及其应用[M]. 5版. 北京:科学出版社

发展系数与预测情形的探究

数学建模day16-预测模型,数学建模,AI学习之路,数学建模


 

GM(1,1)模型的评价

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

GM(1,1)模型的检验

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

GM(1,1)模型的拓展  

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

作者找了一个灰色预测的例子,在这个例子中新陈代谢模型的预测效果最好。


什么时候用灰色预测?

下面是清风大佬的看法,使用哪种模型进行预测是仁者见仁智者见智的事情:
(1)数据是以年份度量的非负数据(如果是月份或者季度数据一定要用我们上一讲学过的时间序列模型);
(2)数据能经过准指数规律的检验(除了前两期外,后面至少90%的期数的光滑比要低于0.5);
(3)数据的期数较短且和其他数据之间的关联性不强(小于等于10,也不能太短了,比如只有3期数据),要是数据期数较长,一般用传统的时间序列模型比较合适。


灰色预测的例题

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

预测的题目的一些小套路

(1)看到数据后先画时间序列图并简单的分析下趋势(例如:我们上一讲学过的时间序列分解)
(2)将数据分为训练组和试验组,尝试使用不同的模型对训练组进行建模,并利用试验组的数据判断哪种模型的预测效果最好(比如我们可以使用SSE这个指标来挑选模型,常见的模型有指数平滑、ARIMA、灰色预测、神经网络等)。
(3)选择上一步骤中得到的预测误差最小的那个模型,并利用全部数据来重新建模,并对未来的数据进行预测。
(4)画出预测后的数据和原来数据的时序图,看看预测的未来趋势是否合理。


Matlab代码

main.m

%%  输入原始数据并做出时间序列图
clear;clc
year =[1995:1:2004]';  % 横坐标表示年份,写成列向量的形式(加'就表示转置)
x0 = [174,179,183,189,207,234,220.5,256,270,285]';  %原始数据序列,写成列向量的形式(加'就表示转置)
% year = [2009:2015]; % 其实本程序写成了行向量也可以,因为我怕你们真的这么写了,所以在后面会有判断。
% x0 = [730, 679, 632, 599, 589, 532, 511];
% year = [2010:2017]';   % 该数据很特殊,可以通过准指数规律检验,但是预测效果却很差
% x0 = [1.321,0.387,0.651,0.985,1.235,0.987,0.854,1.021]';
% year = [2014:2017]';
% x0 = [2.874,3.278,3.337,3.390]';

% 画出原始数据的时间序列图
figure(1); % 因为我们的图形不止一个,因此要设置编号
plot(year,x0,'o-'); grid on;  % 原式数据的时间序列图
set(gca,'xtick',year(1:1:end))  % 设置x轴横坐标的间隔为1
xlabel('年份');  ylabel('排污总量');  % 给坐标轴加上标签


%% 因为我们要使用GM(1,1)模型,其适用于数据期数较短的非负时间序列
ERROR = 0;  % 建立一个错误指标,一旦出错就指定为1
% 判断是否有负数元素
if sum(x0<0) > 0  % x0<0返回一个逻辑数组(0-1组成),如果有数据小于0,则所在位置为1,如果原始数据均为非负数,那么这个逻辑数组中全为0,求和后也是0~
    disp('亲,灰色预测的时间序列中不能有负数哦')
    ERROR = 1;
end

% 判断数据量是否太少
n = length(x0);  % 计算原始数据的长度
disp(strcat('原始数据的长度为',num2str(n)))    % strcat()是连接字符串的函数,第一讲学了,可别忘了哦
if n<=3
    disp('亲,数据量太小,我无能为力哦')
    ERROR = 1;
end

% 数据太多时提示可考虑使用其他方法(不报错)
if n>10
    disp('亲,这么多数据量,一定要考虑使用其他的方法哦,例如ARIMA,指数平滑等')
end

% 判断数据是否为列向量,如果输入的是行向量则转置为列向量
if size(x0,1) == 1
    x0 = x0';
end
if size(year,1) == 1
    year = year';
end


%% 对一次累加后的数据进行准指数规律的检验(注意,这个检验有时候即使能通过,也不一定能保证预测结果非常好,例如上面的第三组数据)
if ERROR == 0   % 如果上述错误均没有发生时,才能执行下面的操作步骤
    disp('------------------------------------------------------------')
    disp('准指数规律检验')
    x1 = cumsum(x0);   % 生成1-AGO序列,cumsum是累加函数哦~    注意:1.0e+03 *0.1740的意思是科学计数法,即10^3*0.1740 = 174
    rho = x0(2:end) ./ x1(1:end-1) ;   % 计算光滑度rho(k) = x0(k)/x1(k-1)
    
    % 画出光滑度的图形,并画上0.5的直线,表示临界值
    figure(2)
    plot(year(2:end),rho,'o-',[year(2),year(end)],[0.5,0.5],'-'); grid on;
    text(year(end-1)+0.2,0.55,'临界线')   % 在坐标(year(end-1)+0.2,0.55)上添加文本
    set(gca,'xtick',year(2:1:end))  % 设置x轴横坐标的间隔为1
    xlabel('年份');  ylabel('原始数据的光滑度');  % 给坐标轴加上标签
    
    
    disp(strcat('指标1:光滑比小于0.5的数据占比为',num2str(100*sum(rho<0.5)/(n-1)),'%'))
    disp(strcat('指标2:除去前两个时期外,光滑比小于0.5的数据占比为',num2str(100*sum(rho(3:end)<0.5)/(n-3)),'%'))
    disp('参考标准:指标1一般要大于60%, 指标2要大于90%,你认为本例数据可以通过检验吗?')
    
    Judge = input('你认为可以通过准指数规律的检验吗?可以通过请输入1,不能请输入0:');
    if Judge == 0
        disp('亲,灰色预测模型不适合你的数据哦~ 请考虑其他方法吧 例如ARIMA,指数平滑等')
        ERROR = 1;
    end
    disp('------------------------------------------------------------')
end

%% 当数据量大于4时,我们利用试验组来选择使用传统的GM(1,1)模型、新信息GM(1,1)模型还是新陈代谢GM(1,1)模型; 如果数据量等于4,那么我们直接对三种方法求一个平均来进行预测
if ERROR == 0   % 如果上述错误均没有发生时,才能执行下面的操作步骤
    if  n > 4  % 数据量大于4时,将数据分为训练组和试验组(根据原数据量大小n来取,n为5-7个则取最后两年为试验组,n大于7则取最后三年为试验组)
        disp('因为原数据的期数大于4,所以我们可以将数据组分为训练组和试验组')   % 注意,如果试验组的个数只有1个,那么三种模型的结果完全相同,因此至少要取2个试验组
        if n > 7
            test_num = 3;
        else
            test_num = 2;
        end
        train_x0 = x0(1:end-test_num);  % 训练数据
        disp('训练数据是: ')
        disp(mat2str(train_x0'))  % mat2str可以将矩阵或者向量转换为字符串显示, 这里加一撇表示转置,把列向量变成行向量方便观看
        test_x0 =  x0(end-test_num+1:end); % 试验数据
        disp('试验数据是: ')
        disp(mat2str(test_x0'))  % mat2str可以将矩阵或者向量转换为字符串显示
        disp('------------------------------------------------------------')
        
        % 使用三种模型对训练数据进行训练,返回的result就是往后预测test_num期的数据
        disp(' ')
        disp('***下面是传统的GM(1,1)模型预测的详细过程***')
        result1 = gm11(train_x0, test_num); %使用传统的GM(1,1)模型对训练数据,并预测后test_num期的结果
        disp(' ')
        disp('***下面是进行新信息的GM(1,1)模型预测的详细过程***')
        result2 = new_gm11(train_x0, test_num); %使用新信息GM(1,1)模型对训练数据,并预测后test_num期的结果
        disp(' ')
        disp('***下面是进行新陈代谢的GM(1,1)模型预测的详细过程***')
        result3 = metabolism_gm11(train_x0, test_num); %使用新陈代谢GM(1,1)模型对训练数据,并预测后test_num期的结果
        
        % 现在比较三种模型对于试验数据的预测结果
        disp(' ')
        disp('------------------------------------------------------------')
        % 绘制对试验数据进行预测的图形(对于部分数据,可能三条直线预测的结果非常接近)
        test_year = year(end-test_num+1:end);  % 试验组对应的年份
        figure(3)
        plot(test_year,test_x0,'o-',test_year,result1,'*-',test_year,result2,'+-',test_year,result3,'x-'); grid on;
        set(gca,'xtick',year(end-test_num+1): 1 :year(end))  % 设置x轴横坐标的间隔为1
        legend('试验组的真实数据','传统GM(1,1)预测结果','新信息GM(1,1)预测结果','新陈代谢GM(1,1)预测结果')  % 注意:如果lengend挡着了图形中的直线,那么lengend的位置可以自己手动拖动
        xlabel('年份');  ylabel('排污总量');  % 给坐标轴加上标签
        % 计算误差平方和SSE
        SSE1 = sum((test_x0-result1).^2);
        SSE2 = sum((test_x0-result2).^2);
        SSE3 = sum((test_x0-result3).^2);
        disp(strcat('传统GM(1,1)对于试验组预测的误差平方和为',num2str(SSE1)))
        disp(strcat('新信息GM(1,1)对于试验组预测的误差平方和为',num2str(SSE2)))
        disp(strcat('新陈代谢GM(1,1)对于试验组预测的误差平方和为',num2str(SSE3)))
        if SSE1<SSE2
            if SSE1<SSE3
                choose = 1;  % SSE1最小,选择传统GM(1,1)模型
            else
                choose = 3;  % SSE3最小,选择新陈代谢GM(1,1)模型
            end
        elseif SSE2<SSE3
            choose = 2;  % SSE2最小,选择新信息GM(1,1)模型
        else
            choose = 3;  % SSE3最小,选择新陈代谢GM(1,1)模型
        end
        Model = {'传统GM(1,1)模型','新信息GM(1,1)模型','新陈代谢GM(1,1)模型'};
        disp(strcat('因为',Model(choose),'的误差平方和最小,所以我们应该选择其进行预测'))
        disp('------------------------------------------------------------')
        
        %% 选用误差最小的那个模型进行预测
        predict_num = input('请输入你要往后面预测的期数: ');
        % 计算使用传统GM模型的结果,用来得到另外的返回变量:x0_hat, 相对残差relative_residuals和级比偏差eta
        [result, x0_hat, relative_residuals, eta] = gm11(x0, predict_num);  % 先利用gm11函数得到对原数据拟合的详细结果
        
        % % 判断我们选择的是哪个模型,如果是2或3,则更新刚刚由模型1计算出来的预测结果
        if choose == 2
            result = new_gm11(x0, predict_num);
        end
        if choose == 3
            result = metabolism_gm11(x0, predict_num);
        end
        
        %% 输出使用最佳的模型预测出来的结果
        disp('------------------------------------------------------------')
        disp('对原始数据的拟合结果:')
        for i = 1:n
            disp(strcat(num2str(year(i)), ' : ',num2str(x0_hat(i))))
        end
        disp(strcat('往后预测',num2str(predict_num),'期的得到的结果:'))
        for i = 1:predict_num
            disp(strcat(num2str(year(end)+i), ' : ',num2str(result(i))))
        end
        
        %% 如果只有四期数据,那么我们就没必要选择何种模型进行预测,直接对三种模型预测的结果求一个平均值~
    else
        disp('因为数据只有4期,因此我们直接将三种方法的结果求平均即可~')
        predict_num = input('请输入你要往后面预测的期数: ');
        disp(' ')
        disp('***下面是传统的GM(1,1)模型预测的详细过程***')
        [result1, x0_hat, relative_residuals, eta] = gm11(x0, predict_num);
        disp(' ')
        disp('***下面是进行新信息的GM(1,1)模型预测的详细过程***')
        result2 = new_gm11(x0, predict_num);
        disp(' ')
        disp('***下面是进行新陈代谢的GM(1,1)模型预测的详细过程***')
        result3 = metabolism_gm11(x0, predict_num);
        result = (result1+result2+result3)/3;
        
        disp('对原始数据的拟合结果:')
        for i = 1:n
            disp(strcat(num2str(year(i)), ' : ',num2str(x0_hat(i))))
        end
        disp(strcat('传统GM(1,1)往后预测',num2str(predict_num),'期的得到的结果:'))
        for i = 1:predict_num
            disp(strcat(num2str(year(end)+i), ' : ',num2str(result1(i))))
        end
        disp(strcat('新信息GM(1,1)往后预测',num2str(predict_num),'期的得到的结果:'))
        for i = 1:predict_num
            disp(strcat(num2str(year(end)+i), ' : ',num2str(result2(i))))
        end
        disp(strcat('新陈代谢GM(1,1)往后预测',num2str(predict_num),'期的得到的结果:'))
        for i = 1:predict_num
            disp(strcat(num2str(year(end)+i), ' : ',num2str(result3(i))))
        end
        disp(strcat('三种方法求平均得到的往后预测',num2str(predict_num),'期的得到的结果:'))
        for i = 1:predict_num
            disp(strcat(num2str(year(end)+i), ' : ',num2str(result(i))))
        end
    end
    
    %% 绘制相对残差和级比偏差的图形(注意:因为是对原始数据的拟合效果评估,所以三个模型都是一样的哦~~~)
    figure(4)
    subplot(2,1,1)  % 绘制子图(将图分块)
    plot(year(2:end), relative_residuals,'*-'); grid on;   % 原数据中的各时期和相对残差
    legend('相对残差'); xlabel('年份');
    set(gca,'xtick',year(2:1:end))  % 设置x轴横坐标的间隔为1
    subplot(2,1,2)
    plot(year(2:end), eta,'o-'); grid on;   % 原数据中的各时期和级比偏差
    legend('级比偏差'); xlabel('年份');
    set(gca,'xtick',year(2:1:end))  % 设置x轴横坐标的间隔为1
    disp(' ')
    disp('****下面将输出对原数据拟合的评价结果***')
    
    %% 残差检验
    average_relative_residuals = mean(relative_residuals);  % 计算平均相对残差 mean函数用来均值
    disp(strcat('平均相对残差为',num2str(average_relative_residuals)))
    if average_relative_residuals<0.1
        disp('残差检验的结果表明:该模型对原数据的拟合程度非常不错')
    elseif average_relative_residuals<0.2
        disp('残差检验的结果表明:该模型对原数据的拟合程度达到一般要求')
    else
        disp('残差检验的结果表明:该模型对原数据的拟合程度不太好,建议使用其他模型预测')
    end
    
    %% 级比偏差检验
    average_eta = mean(eta);   % 计算平均级比偏差
    disp(strcat('平均级比偏差为',num2str(average_eta)))
    if average_eta<0.1
        disp('级比偏差检验的结果表明:该模型对原数据的拟合程度非常不错')
    elseif average_eta<0.2
        disp('级比偏差检验的结果表明:该模型对原数据的拟合程度达到一般要求')
    else
        disp('级比偏差检验的结果表明:该模型对原数据的拟合程度不太好,建议使用其他模型预测')
    end
    disp(' ')
    disp('------------------------------------------------------------')
    
    %% 绘制最终的预测效果图
    figure(5)  % 下面绘图中的符号m:洋红色 b:蓝色
    plot(year,x0,'-o',  year,x0_hat,'-*m',  year(end)+1:year(end)+predict_num,result,'-*b' );   grid on;
    hold on;
    plot([year(end),year(end)+1],[x0(end),result(1)],'-*b')
    legend('原始数据','拟合数据','预测数据')  % 注意:如果lengend挡着了图形中的直线,那么lengend的位置可以自己手动拖动
    set(gca,'xtick',[year(1):1:year(end)+predict_num])  % 设置x轴横坐标的间隔为1
    xlabel('年份');  ylabel('排污总量');  % 给坐标轴加上标签
end

gm11.m

function [result, x0_hat, relative_residuals, eta] = gm11(x0, predict_num)
    % 函数作用:使用传统的GM(1,1)模型对数据进行预测
    %     x0:要预测的原始数据
    %     predict_num: 向后预测的期数
    % 输出变量 (注意,实际调用时该函数时不一定输出全部结果,就像corrcoef函数一样~,可以只输出相关系数矩阵,也可以附带输出p值矩阵)
    %     result:预测值
    %     x0_hat:对原始数据的拟合值
    %     relative_residuals: 对模型进行评价时计算得到的相对残差
    %     eta: 对模型进行评价时计算得到的级比偏差

    n = length(x0); % 数据的长度
    x1=cumsum(x0); % 计算一次累加值
    z1 = (x1(1:end-1) + x1(2:end)) / 2;  % 计算紧邻均值生成数列(长度为n-1)
    % 将从第二项开始的x0当成y,z1当成x,来进行一元回归  y = kx +b
    y = x0(2:end); x = z1;
    % 下面的表达式就是第四讲拟合里面的哦~ 但是要注意,此时的样本数应该是n-1,少了一项哦
    k = ((n-1)*sum(x.*y)-sum(x)*sum(y))/((n-1)*sum(x.*x)-sum(x)*sum(x));
    b = (sum(x.*x)*sum(y)-sum(x)*sum(x.*y))/((n-1)*sum(x.*x)-sum(x)*sum(x));
    a = -k;  %注意:k = -a哦
    % 注意: -a就是发展系数,  b就是灰作用量
    
    disp('现在进行GM(1,1)预测的原始数据是: ')
    disp(mat2str(x0'))  % mat2str可以将矩阵或者向量转换为字符串显示
    disp(strcat('最小二乘法拟合得到的发展系数为',num2str(-a),',灰作用量是',num2str(b)))
    disp('***************分割线***************')
    x0_hat=zeros(n,1);  x0_hat(1)=x0(1);   % x0_hat向量用来存储对x0序列的拟合值,这里先进行初始化
    for m = 1: n-1
        x0_hat(m+1) = (1-exp(a))*(x0(1)-b/a)*exp(-a*m);
    end
    result = zeros(predict_num,1);  % 初始化用来保存预测值的向量
    for i = 1: predict_num
        result(i) = (1-exp(a))*(x0(1)-b/a)*exp(-a*(n+i-1)); % 带入公式直接计算
    end

    % 计算绝对残差和相对残差
    absolute_residuals = x0(2:end) - x0_hat(2:end);   % 从第二项开始计算绝对残差,因为第一项是相同的
    relative_residuals = abs(absolute_residuals) ./ x0(2:end);  % 计算相对残差,注意分子要加绝对值,而且要使用点除
    % 计算级比和级比偏差
    class_ratio = x0(2:end) ./ x0(1:end-1) ;  % 计算级比 sigma(k) = x0(k)/x0(k-1)
    eta = abs(1-(1-0.5*a)/(1+0.5*a)*(1./class_ratio));  % 计算级比偏差
end

metabolism_gm11.m

function [result] = metabolism_gm11(x0, predict_num)
% 函数作用:使用新陈代谢的GM(1,1)模型对数据进行预测
% 输入变量
%     x0:要预测的原始数据
%     predict_num: 向后预测的期数
% 输出变量
%     result:预测值
    result = zeros(predict_num,1);  % 初始化用来保存预测值的向量
    for i = 1 : predict_num  
        result(i) = gm11(x0, 1);  % 将预测一期的结果保存到result中
        x0 = [x0(2:end); result(i)];  % 更新x0向量,此时x0多了新的预测信息,并且删除了最开始的那个向量
    end
end

new_gm11.m

function [result] = new_gm11(x0, predict_num)
% 函数作用:使用新信息的GM(1,1)模型对数据进行预测
% 输入变量
%     x0:要预测的原始数据
%     predict_num: 向后预测的期数
% 输出变量
%     result:预测值
    result = zeros(predict_num,1);  % 初始化用来保存预测值的向量
    for i = 1 : predict_num  
        result(i) = gm11(x0, 1);  % 将预测一期的结果保存到result中
        x0 = [x0; result(i)];  % 更新x0向量,此时x0多了新的预测信息
    end
end

整体理解

1. 画出原始数据的时间序列图,并判断原始数据中是否有负数或期数是否低于4期,如果是的话则报错,否则执行下一步;
2. 对一次累加后的数据进行准指数规律检验,返回两个指标:

指标1:光滑比小于0.5的数据占比(一般要大于60%)
指标2:除去前两个时期外,光滑比小于0.5的数据占比(一般大于90%)并让用户决定数据是否满足准指数规律,满足则输入1,不满足则输入0
3. 如果上一步用户输入0,则程序停止;如果输入1,则继续下面的步骤。
4. 让用户输入需要预测的后续期数,并判断原始数据的期数:
        4.1 数据期数为4:
        分别计算出传统的GM(1,1)模型、新信息GM(1,1)模型和新陈代谢GM(1,1)模型对于未来期数的预测结果,为了保证结果的稳健性,对三个结果求平均值作为预测值。
        4.2 数据期数为5,6或7:
        取最后两期为试验组,前面的n-2期为训练组;用训练组的数据分别训练三种GM模型,并将训练出来的模型分别用于预测试验组的两期数据;利用试验组两期的真实数据和预测出来的两期数据,可分别计算出三个模型的SSE;选择SSE最小的模型作为我们建模的模型。
        4.3 数据期数大于7:
        取最后三期为试验组,其他的过程和4.2类似。
5. 输出并绘制图形显示预测结果,并进行残差检验和级比偏差检验。

灰色预测运行结果

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

更换新的数据集1

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

更换新的数据集2

准指数规律检验失效了,拟合的效果很差

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

平均相对残差为0.24327,平均级比偏差为0.59674

更换新的数据集3

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模


BP神经网络预测——万金油

原理的视频介绍(只看前20分钟,后面的讲的不怎么好,可跳过)

专题 通过四个matlab建模案例彻底精通BP神经网络_哔哩哔哩_bilibili

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

神经网络原理的简单介绍:一、最简单的神经网络--Bp神经网络_最简单神经网络-CSDN博客

神经网络的应用:利用MATLAB 2016a进行BP神经网络的预测-CSDN博客


 神经网络的介绍

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

机器学习中的训练集,验证集和测试集

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

机器学习中的训练集,验证集和测试集-CSDN博客

例题

例题1:辛烷值的预测

        【改编】辛烷值是汽油最重要的品质指标,传统的实验室检测方法存在样品用量大,测试周期长和费用高等问题,不适用于生产控制,特别是在线测试。近年发展起来的近红外光谱分析方法(NIR),作为一种快速分析方法,已广泛应用于农业、制药、生物化工、石油产品等领域。其优越性是无损检测、低成本、无污染,能在线分析,更适合于生产和控制的需要。
        实验采集得到50组汽油样品(辛烷值已通过其他方法测量),并利用傅里叶近红外变换光谱仪对其进行扫描,扫描范围900~1700nm,扫描间隔为2nm,即每个样品的光谱曲线共含401个波长点,每个波长点对应一个吸光度。
(1)请利用这50组样品的数据,建立这401个吸光度和辛烷值之间的模型。
(2)现给你10组新的样本,这10组样本均已经过近红外变换光谱仪扫描,请预测这10组新样本的辛烷值。

数据的导入

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

使用神经网络进行预测

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

注意:老版本的Matlab的神经网络拟合工具箱可能不在这个位置

关键的步骤

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

隐层神经元的个数,这个参数可以根据拟合的结果再次进行调整。

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

莱文贝格-马夸特方法(Levenberg–Marquardt algorithm):

        能提供数非线性最小化(局部最小)的数值解。此算法能借由执行时修改参数达到结合高斯-牛顿算法以及梯度下降法的优点,并对两者之不足作改善(比如高斯-牛顿算法之反矩阵不存在或是初始值离局部极小值太远)

贝叶斯正则化方法(Bayesian-regularization):

贝叶斯正则化在神经网络拟合中的通俗理解_贝叶斯正则化神经网络-CSDN博客

量化共轭梯度法(Scaled Conjugate Gradient ):
《模式识别与智能计算——MATLAB技术实现》

结果分析

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

        epoch:1个epoch等于使用训练集中的全部样本训练一次,每训练一次,神经网络中的参数经过调整。MSE: Mean Squared Error 均方误差 MSE = SSE/n
        一般来说,经过更多的训练阶段后,误差会减小,但随着网络开始过度拟合训练数据,验证数据集的误差可能会开始增加。在默认设置中,在验证数据集的MSE连续增加六次后,训练停止,最佳模型对应于的最小的MSE。

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

将拟合值对真实值回归,拟合优度越高,说明拟合的的效果越好。

保存结果

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

可以保存神经网络函数的代码,以及神经网络图。

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

保存好训练出来的神经网络模型和结果

保存结果并对进行预测

数学建模day16-预测模型,数学建模,AI学习之路,数学建模


 

例题2:神经网络在多输出中的运用

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

这里我们使用的是Matlab自带的测试数据集哦,如果你没有找到这
个数据集,可能的原因是你的Matlab版本太低。


 

清风大佬对于预测模型的看法

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

加入符合背景的变量

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

一篇不错的论文

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

来源:百度文库(莱斯利人口模型)
基于Leslie模型的二孩政策对中国未来10年人口的预测.pdf

本节作业1:画流程图

        将本节学到的模型(灰色预测和神经网络)整理成流程图,使得国赛建模时经过简单的修改即可使用。
(流程图的作用:模型的思路生动清晰和减少查重)

数学建模day16-预测模型,数学建模,AI学习之路,数学建模

结语

ヾ( ̄▽ ̄)Bye~Bye~

写到深夜现在已经是凌晨两点,再见了兄弟们~~~文章来源地址https://www.toymoban.com/news/detail-810836.html

到了这里,关于数学建模day16-预测模型的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 数学建模——预测类模型

    定义明晰 中短期预测(短期:1年内;中期:2-5年): 例如天气预报、股票价格预测、销售量预测等。 长期预测(5-10年及以上): 例如人口增长、能源消耗、气候变化等。 中短期预测           数据需求小2/10/100 自变量(多个)+因变量(一个)            不可反

    2024年02月03日
    浏览(39)
  • 数学建模--预测类模型

    目录 一、中短期预测 1、灰色预测法 ①适用范围 ②模型实现  2、回归分析 ①适用范围 ②模型实现  3、时间序列分析 ①自适应滤波法 ②指数平滑法 ③移动平均法 4、微分方程 二、长期预测 1、神经网络预测 2、logistic模型 ①模型介绍 ②模型分析及代码 灰色预测模型 ( G

    2024年02月03日
    浏览(46)
  • 数学建模系列-预测模型(三)时间序列预测模型

    目录 前言 1 时间序列定义 1.1 朴素法 1.2 简单平均法 1.3 移动平均法 1.4 指数平滑法 1.4.1 一次指数平滑  1.4.2 二次指数平滑 1.4.3 三次指数平滑 1.5 AR模型 1.6 MA模型 1.7 ARMA模型 1.8 ARIMA模型 1.9 SARIMA模型         时间序列的目的:进行预测, 根据已有的时间序列数据预测未来

    2024年02月07日
    浏览(50)
  • 数学建模之“灰色预测”模型

    1、CUMCM2003A SARS的传播问题 2、CUMCM2005A长江水质的评价和预测CUMCM2006A出版社的资源配置 3、CUMCM2006B艾滋病疗法的评价及疗效的预测问题 4、CUMCM2007A 中国人口增长预测   灰色系统的应用范畴大致分为以下几方面: (1)灰色关联分析。 (2)灰色预测:人口预测;灾变预测....等等。

    2024年02月12日
    浏览(47)
  • 数学建模系列-预测模型(四)马尔可夫预测

    目录 1 Markov模型含义 2 模型分析 3 应用题型  3.1 问题分析 3.2 模型建立 4 Markov模型优缺点         马尔可夫(Markov)预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。马尔可夫预测法是地

    2024年02月07日
    浏览(41)
  • 数学建模常用模型(一):灰色预测法

    灰色预测法是一种用于处理少量数据、数据质量较差或者缺乏历史数据的预测方法。它适用于一些非线性、非平稳的系统,尤其在短期预测和趋势分析方面有着广泛的应用。灰色预测法作为一种强大的数学建模工具,通过利用有限的信息,能够在不完备的条件下进行准确的预

    2024年02月09日
    浏览(52)
  • 数学建模常用模型(六):时间序列预测

    时间序列预测是数学建模中的一个重要领域,用于预测时间序列数据中未来的趋势和模式。时间序列预测可以帮助我们了解数据的演变规律,做出合理的决策和规划。 这是我自己总结的一些代码和资料(本文中的代码以及参考书籍等),放在github上供大家参考: https://githu

    2024年02月13日
    浏览(42)
  • 数学建模day14-分类模型

    本讲将介绍 分类模型 。对于 二分类模型 ,我们将介绍 逻辑回归 (logistic regression)和Fisher 线性判别分析 两种分类算法;对于多分类模型,我们将简单介绍Spss中的多分类线性判别分析和多分类逻辑回归的操作步骤。 注:本文源于数学建模学习交流相关公众号观看学习视频后所

    2024年01月21日
    浏览(32)
  • 数学建模之灰色预测模型代码(matlab版)

    灰色关联分析步骤 【1】确定比较对象(评价对象)(就是数据,并且需要进行规范化处理,就是标准化处理,见下面例题的表格数据)和参考数列(评价标准,一般该列数列都是1,就是最优的的情况) 【2】确定各个指标权重,可用层次分析确定 【3】计算灰色关联系数 【4】

    2024年02月09日
    浏览(46)
  • 数学建模--决策树的预测模型的Python实现

    目录 1.算法流程简介 2.算法核心代码 3.算法效果展示

    2024年02月08日
    浏览(52)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包