【STM32】ESP8266 WiFi模块实时上报温湿度及控制LED灯项目笔记

这篇具有很好参考价值的文章主要介绍了【STM32】ESP8266 WiFi模块实时上报温湿度及控制LED灯项目笔记。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。


一、ESP8266模块

1.模块介绍

本项目无线通讯模块使用的是WiFi模块ESP8266,乐鑫公司推出的高性能、低功耗串口WiFi模块ESP8266应该是使用最广泛的一种WIFI模块之一了,它自身带有高性能的MCU(Microcontroller Unit),因此它既可以通过串口连接为外部MCU提供 WiFi通信功能,也就是我们本项目所用到的功能;当然它也可以让用户直接在模块内置的MCU上基于RTOS SDK进行软件编程,开发出具有低功耗、低成本的WiFi连接产品,如市面上大部分WiFi智能插座就用了ESP8266模块和它的这一功能。

stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络

ESP8266内置一个Tensilica(泰思立达)Xtensa架构的32位处理器L106,具有5级流水线(ARM CortexM3是3级流水线),最大时钟速度为160MHz,可以使用高达16MB的外部SPI Flash。该模块采用串口与MCU(或其他串口设备)通信,内置 TCP/IP协议栈,能够实现串口与 WiFi之间的转换。通过该模块,传统的串口设备只需要简单的串口配置,即可通过WiFi传输自己的数据。

WiFi具有两种功能模式:一种叫AP(Access Point)模式,一种叫Station模式。AP就是我们平时所说的热点,如无线路由器,开了热点的手机等,这些AP设备可以允许其他设备(如手机,PC等)输入热点名(SSID)和密码(也可不设置密码)后连接上网;Station模式则是前面说的连接AP的设备(如手机,PC等)。

ESP8266除支持上述两种模式以外,还可以支持第三种模式:AP+Station,即:将AP和Station的功能合二为一,它主要是实现无线桥接的功能,该模式应用的场景不多。

STM32单片机在与ESP8266进行串口通信时采用AT命令进行通信,这样想要做ESP8266 WiFi模块的程序开发的话,那我们首先得学习并熟练掌握ESP8266 WiFi模块的AT指令。

2.AT指令介绍

AT指令是以AT作为开头,\r\n字符结束的字符串,每个指令执行成功与否都有相应的返回。其他的一些非预期的信息(如有人拨号进来、线路无信号等),模块将有对应的一些信息提示,接收端可做相应的处理。

不同模块的AT命令可能不一样的,这要对着模块的AT指令手册来查看。

AT命令可分为四类:

类型 指令格式 描述
执行指令 AT+ 该命令用于执行受模块内部程序控制的变参数不可变的功能。
测试指令 AT+=? 该命令用于该命令用于查询设置指令的参数以及取值范围。
查询指令 AT+? 该命令用于返回参数的当前值。
设置指令 AT+=<···> 该命令用于设置用户自定义的参数值。

2.硬件连接

由于我的开发板当中3.3V电源是LDO电路从USB TypeC接口提供的5V降压而来,电流较低,所以连ESP8266模块可能会导致它不能正常工作,所以这里我连了5V做VCC,而我所用的ESP8266能够正常工作,具体所用的时候可以视情况而定。
stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络
提示:USB3.0的接口电流较高,如果必要用5V,最好不用USB3.0

ESP8266模块提供TTL串口通信接口,而我所使用的开发板上的扩展UART2串口也是TTL电平,所以直接连接如下:
stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络
stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络

二、串口转发及调试

1.串口转发流程

开发板的USART2串口连接了ESP8266模块,当然我们要通过PC来对它进行调试,所以我们需要STM32写一个单片机上写一个串口接收转发的程序如下图:
stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络

2.串口转发程序实现

STM32CubeMX配置

stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络

修改usart.h/.c文件

对usart.h文件做如下修改:

... ...
/* USER CODE BEGIN Private defines */
extern char g_uart1_rxbuf[256];
extern uint8_t g_uart1_bytes;


#define clear_uart1_rxbuf() do { memset(g_uart1_rxbuf, 0, sizeof(g_uart1_rxbuf)); \
		g_uart1_bytes=0; } while(0)

//在这里添加uar2接收 buffer相关变量声明,并添加一个宏 clear_uart2_rxbuf()用来清除接收 buffer里的数据
extern char g_uart2_rxbuf[256];
extern uint8_t g_uart2_bytes;


#define clear_uart2_rxbuf() do { memset(g_uart2_rxbuf, 0, sizeof(g_uart2_rxbuf)); \
		g_uart2_bytes=0; } while(0)

//添加串口接收转发函数的声明
extern void uart_forward(void);

/* USER CODE END Private defines */
... ...

对usart.c文件做如下修改:

... ...
/* USER CODE BEGIN 0 */
static	uint8_t			s_uart1_rxch;
char					g_uart1_rxbuf[256];
uint8_t					g_uart1_bytes;

static	uint8_t			s_uart2_rxch;
char					g_uart2_rxbuf[256];
uint8_t					g_uart2_bytes;
/* USER CODE END 0 */
... ...

void MX_USART2_UART_Init(void)
{
... ...
  /* USER CODE BEGIN USART2_Init 2 */
  HAL_UART_Receive_IT(&huart2 , &s_uart2_rxch, 1);//HAL_UART_Receive_IT中断服务处理程序
  /* USER CODE END USART2_Init 2 */

}
... ...

/* USER CODE BEGIN 1 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
	if (huart->Instance == USART1)
	{
		if( g_uart1_bytes< sizeof(g_uart1_rxbuf) )
		{
			g_uart1_rxbuf[g_uart1_bytes++] = s_uart1_rxch;
		}
		HAL_UART_Receive_IT(&huart1 , &s_uart1_rxch, 1);
	}

	if (huart->Instance == USART2)
		{
			if( g_uart2_bytes< sizeof(g_uart2_rxbuf) )
			{
				g_uart2_rxbuf[g_uart2_bytes++] = s_uart2_rxch;
			}
			HAL_UART_Receive_IT(&huart2 , &s_uart2_rxch, 1);
		}
}

//添加usart1和usart2的收发转发功能函数,main()函数中调用
void uart_forward(void)
{
	if(strstr(g_uart1_rxbuf, "\r\n"))
	{
		HAL_UART_Transmit(&huart2, (uint8_t *)g_uart1_rxbuf, g_uart1_bytes,0xFF);
		clear_uart1_rxbuf();
	}

	if(g_uart2_bytes > 0)
	{
		HAL_Delay(100);/*Wait AT command reply receive over*/
		HAL_UART_Transmit(&huart1, (uint8_t *)g_uart2_rxbuf, g_uart2_bytes,0xFF);
		clear_uart2_rxbuf();
	}
}
... ...

/* USER CODE END 1 */

... ...

修改main.c文件

如下:

... ...
  while(1)
  {
	  uart_forward();//后面使用无线通讯时只需要用Socket通信,不在需要此转发程序,如果没有注释掉会报错,并不会执行PC发的JOSN指令
#if 0
... ...
#endif
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
    }... ...
    

3.运行测试

用串口调试工具进行测试:
stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络

三、AT指令学习

每一个使用AT指令通信的模块都有自己详细的AT指令使用说明文档,模块里的软件固件版本不一样,其AT指令可能也不大一样,可以通过你的模块以及版本找到对应的说明文档对照。

对于我所使用的ESP8266 WiFi模块:

1.WiFi初始化命令

AT命令 说明
AT AT命令用来确认模块是否正常工作以及串口通信是否正常
AT+GMR 获取WiFi模块的软件固件版本信息
AT+RST 重启、复位WiFi模块
AT+CWMODE_CUR=1 设置ESP8266 WiFi模块工作在Station模式
AT+CWDHCP_CUR=1,1 设置使能ESP8266 WiFi模块Station模式的DHCP服务
AT+CIPSTA_CUR 静态设置ESP8266的IP地址,子网掩码和默认网关

2.无线连接命令

AT命令 说明
AT+CWJAP_CUR=“Router_SSID” ,“Password” 该命令用来连接指定的无线路由器
AT+CIPSTA_CUR? 该命令用来查看ESP8266当前的IP地址
AT+PING=“192.168.0.1” 该命令用来测试与目标主机的连通性

3.数据收发命令

AT命令 说明
AT+CIPMUX=0 该命令用来禁用多个socket连接,一般只连接一个目标服务器。
AT+CIPSTART=“TCP”,“192.168.0.100"”,12345 该命令用来连接指定的目标socket 服务器
AT+CIPSEND=5 该命令用来发送5个字节的数据,在收到模块回应的‘>’字符后,开始输入要发送的数据内容。
AT+CIPCLOSE 该命令用来断开Socket连接

注意:指令带_CUR后缀则表示只更改当前系统配置,并不写入Flash存储器中,重启复位后失效。而如果需要重启后依然有效则用带_DEF后缀的命令。

四、WiFi模块实时上报温湿度与远程控制LED灯实现

1.esp8266.h/.c

代码如下:

/*
 * esp8266.h
 *
 *  Created on: 2023年2月26日
 *      Author: ASUS
 */

#ifndef INC_ESP8266_H_
#define INC_ESP8266_H_

#include <stdio.h>

#define wifi_huart			&huart2			/*wiFi模块使用的串口*/
#define g_wifi_rxbuf		g_uart2_rxbuf	/*wiFi模块的接收buffer */
#define g_wifi_rxbytes		g_uart2_bytes 	/*wiFi模块接收的数据大小*/

/*清除WiFi模块接收 buffer里的数据内容宏,用宏不用函数是因为函数调用需要额外时间开销*/
#define clear_atcmd_buf()	do { memset(g_wifi_rxbuf, 0, sizeof(g_wifi_rxbuf));g_wifi_rxbytes=0; } while(0)

/*ESP8266 WiFi模块发送AT命令函数,返回值为О表示成功,!0表示失败*/
#define EXPECT_OK	"OK\r\n"
extern int send_atcmd(char *atcmd, char *expect_reply, unsigned int timeout);

/*ESP8266 WiFi模块初始化函数。返回值为0表示成功,!0表示失败*/
extern int esp8266_module_init(void);

/*ESP8266 WiFi模块复位重启函数。返回值为О表示成功,!0表示失败*/
extern int esp8266_module_reset(void);

/*ESP8266 WiFi模块连接路由器函数。返回值为О表示成功,!0表示失败*/
extern int esp8266_join_network( char *ssid,char *pwd) ;

/*ESP8266获取自己的IP地址和网关IP地址。返回值为О表示成功,!O表示失败*/
int esp8266_get_ipaddr(char *ipaddr, char *gateway, int ipaddr_size);

/*ESP8266 WiFi模块做ping 命令测试网络连通性。返回值为О表示成功,!0表示失败*/
int esp8266_ping_test(char *host);

/*ESP8266 WiFi模块建立TCP socket连接函数。返回值为О表示成功,!0表示失败*/
extern int esp8266_sock_connect( char *servip, int port);

/* ESP8266 WiFi模块断开TCP socket连接函数。返回值为О表示成功,!0表示失败*/
extern int esp8266_sock_disconnect(void);

/*ESP8266 WiFi通过 TCP Socket发送数据函数。返回值为0表示失败,>0表示成功发送字节数*/
extern int esp8266_sock_send(unsigned char *data, int bytes);

/* ESP8266 WiFi通过TCP Socket 接收数据函数。返回值为0无数据,>0表示接收到数据字节数*/
extern int esp8266_sock_recv(unsigned char *buf, int size);

#endif /* INC_ESP8266_H_ */

/*
 * esp8266.c
 *
 *  Created on: 2023年2月26日
 *      Author: ASUS
 */

#include <stdlib.h>
#include "usart.h"
#include "esp8266.h"

/*WiFi模块驱动调试宏,注释下面两个宏定义可以取消调试打印*/
//#define CONFIG_WIFI_DEBUG
#define CONFIG_WIFI_PRINT

#ifdef CONFIG_WIFI_DEBUG
#define wifi_dbg(format,args...) printf(format, ##args)
#else
#define wifi_dbg(format,args...) do{} while(0)
#endif

#ifdef CONFIG_WIFI_PRINT
#define wifi_print(format,args...) printf(format, ##args)
#else
#define wifi_print(format,args...) do{} while(0)
#endif

int send_atcmd(char *atcmd, char *expect_reply, unsigned int timeout)
{
	int				rv = 1;
	unsigned int	i;
	char			*expect;

	/*check function input arguments validation*/
	if( !atcmd || strlen(atcmd)<=0 )
	{
		wifi_print("ERROR:Invalid input arguments\r\n");
		return -1;
	}

	wifi_dbg("\r\nStart send AT command: %s",atcmd);
	clear_atcmd_buf();
	HAL_UART_Transmit(wifi_huart, (uint8_t *)atcmd, strlen(atcmd), 1000);

	expect = expect_reply ? expect_reply : "OK\r\n";

	/*Receive AT reply string by UART interrupt handler,stop by "OK/ERROR" or timeout*/
	for(i=0; i<timeout; i++)
	{
		if( strstr(g_wifi_rxbuf, expect))
		{
			wifi_dbg("AT command Got expect reply '%s'\r\n", expect);
			rv = 0;
			goto CleanUp;
		}
		if( strstr(g_wifi_rxbuf, "ERROR\r\n") || strstr(g_wifi_rxbuf, "FAIL\r\n"))
		{
			rv = 2;
			goto CleanUp;
		}

		HAL_Delay(1);
	}


CleanUp:
	wifi_dbg("<<<< AT command reply:\r\n%s", g_wifi_rxbuf);
	return rv;

}

int atcmd_send_data(unsigned char *data, int bytes, unsigned int timeout)
{
	int				rv = -1;
	unsigned int	i;

	/* check function input arguments validation */
	if( !data || bytes <= 0 )
	{
		wifi_print("ERROR: Invalid input arguments\r\n");
		return -1;
	}

	wifi_dbg("\r\nStart AT command send [%d] bytes data\n", bytes);
	clear_atcmd_buf();
	HAL_UART_Transmit(wifi_huart, data, bytes, 1000);

	/*Receive AT reply string by UART interrupt handler,stop by "OK/ERROR" or timeout */
	for(i=0; i<timeout; i++)
	{
		if(strstr(g_wifi_rxbuf, "SEND OK\r\n"))
		{
			rv = 0;
			goto CleanUp;
		}
		if(strstr(g_wifi_rxbuf, "ERROR\r\n"))
		{
			rv = 1;
			goto CleanUp;
		}

		HAL_Delay(1);
	}


CleanUp:
	wifi_dbg("<<<< AT command reply:\r\n%s", g_wifi_rxbuf);
	return rv;
}

int esp8266_module_init(void)
{
	int		i;

	wifi_print("INFO: Reset ESP8266 module now...\r\n");
	send_atcmd("AT+RST\r\n", EXPECT_OK, 500);

	for(i=0; i<6; i++)
	{
		if( !send_atcmd("AT\r\n", EXPECT_OK, 500) )
		{
			wifi_print("INFO: Send AT to ESP8266 and got reply ok \r\n");
			break;
		}

		HAL_Delay(100);
	}

	if( i>= 6 )
	{
		wifi_print("ERROR: Can't receive AT replay after reset\r\n");
		return -2;
	}

	if( send_atcmd( "AT+CWMODE=1\r\n", EXPECT_OK, 500) )
	{
		wifi_print("ERROR : Set ESP8266 work as station mode failure\r\n");
		return -3;
	}

	if( send_atcmd("AT+CWDHCP=1,1\r\n", EXPECT_OK, 500) )
	{
		wifi_print("ERROR: Enable ESP8266 Station mode DHCP failure\r\n");
		return -4;
	}

#if 0
	if( send_atcmd( "AT+GMR\r\n",EXPECT_OK,500))
	{
		wifi_print("ERROR: AT+GMR check ESP8266 reversion failure\r\n");
		return -5;
	}
#endif
	HAL_Delay(500);
	return 0;
}


int esp8266_join_network(char *ssid, char *pwd)
{
	char			atcmd[128] = {0x00};
	int				i;

	if( !ssid || !pwd )
	{
		wifi_print( "ERROR:Invalid input arguments\r\n");
		return -1;
	}

	snprintf(atcmd, sizeof(atcmd), "AT+CWJAP=\"%s\",\"%s\"\r\n", ssid, pwd);
	if( send_atcmd(atcmd, "CONNECTED", 10000) )
	{
		wifi_print("ERROR: ESP8266 connect to '%s' failure\r\n", ssid);
		return -2 ;
	}
	wifi_print("INFO: ESP8266 connect to '%s' ok\r\n", ssid);

	/*check got IP address or not by netmask (255.)*/
	for(i=0; i<10; i++)
	{
		if( !send_atcmd( "AT+CIPSTA_CUR?\r\n", "255.", 1000))
		{
			wifi_print( "INFO: ESP8266 got Ip address ok\r\n" );
			return 0;
		}

		HAL_Delay(300);
	}

	wifi_print("ERROR: ESP8266 assigned IP address failure\r\n");
	return -3;
}

/*
+CIPSTA_CUR:ip: "192.168.0.120"
+CIPSTA_CUR:gateway: "192.168.0.1"
*/
static int util_parser_ipaddr(char *buf, char *key, char *ipaddr, int size)
{
	char		*start;
	char		*end;
	int			len;

	if(!buf || !key || !ipaddr)
	{
		return -1;
	}
	/*find the key string */
	start = strstr(buf, key);
	if( !start )
	{
		return -2;
	}

	start+=strlen(key) + 1;/*Skip ”*/
	end = strchr(start,'"');/*find last " */
	if( !end )
	{
		return -3;
	}

	len = end - start;
	len = len>size ? size : len;

	memset(ipaddr, 0, size);
	strncpy(ipaddr, start, len);

	return 0;
}

int esp8266_get_ipaddr(char *ipaddr, char *gateway, int ipaddr_size)
{
	if( !ipaddr || !gateway || ipaddr_size<7 )
	{
		wifi_print("ERROR: Invalid input arguments\r\n");
		return -1;
	}

	if( send_atcmd( "AT+CIPSTA_CUR?\r\n", "255.", 1000) )
	{
		wifi_print("ERROR: ESP8266 AT+CIPSTA_CUR? command failure\r\n");
		return -2;
	}

	if( util_parser_ipaddr(g_wifi_rxbuf, "ip:", ipaddr, ipaddr_size) )
	{
		wifi_print("ERROR: ESP8266 AT+CIPSTA_CUR? parser IP address failure\r\n");
		return -3;
	}

	if( util_parser_ipaddr(g_wifi_rxbuf, "gateway:", gateway, ipaddr_size))
	{
		wifi_print("ERROR: ESP8266 AT+CIPSTA_CUR? parser gateway failure\r\n");
		return -4;
	}

	wifi_print("INFO: ESP8266 got IP address[%s] gateway[%s] ok\r\n", ipaddr, gateway);
	return 0;
}

int esp8266_ping_test(char *host)
{
	char			atcmd[128]={0x00};

	if(!host)
	{
		wifi_print( "ERROR: Invalid input arguments\r\n" );
		return -1;
	}

	snprintf(atcmd, sizeof(atcmd), "AT+PING=\"%s\"\r\n", host);
	if( send_atcmd( atcmd, EXPECT_OK, 3000) )
	{
		wifi_print("ERROR: ESP8266 ping test [%s ] failure\rin", host);
		return -2;
	}

	wifi_print("INFO: ESP8266 ping test [%s ] ok\r\n", host);
	return 0;
}

int esp8266_sock_connect(char *servip, int port)
{
	char			atcmd[128] = {0x00};

	if( !servip || port<=0 )
	{
		wifi_print("ERROR: Invalid input arguments\rin");
		return -1;
	}

	send_atcmd ( "AT+CIPMUX=0\r\n", EXPECT_OK, 1500);

	snprintf(atcmd, sizeof(atcmd), "AT+CIPSTART=\"TCP\",\"%s\",%d\r\n", servip, port);
	if(send_atcmd(atcmd,"CONNECT\r\n", 1000) )
	{
		wifi_print("ERROR: ESP8266 socket connect to [%s:%d] failure\r\n", servip, port);
		return -2;
	}

	wifi_print("INFO: ESP8266 socket connect to [%s:%d] ok\r\n", servip, port);
	return 0;
}

int esp8266_sock_disconnect(void)
{
	send_atcmd("AT+CIPCLOSE\r\n", EXPECT_OK, 1500);
	return 0;
}

int esp8266_sock_send(unsigned char *data, int bytes)
{
	char			atcmd[128] = {0x00};

	if( !data || bytes<=0)
	{
		wifi_print("ERROR: Invalid input arguments\r\n");
		return -1;
	}

	snprintf(atcmd, sizeof(atcmd),  "AT+CIPSEND=%d\r\n", bytes);
	if( send_atcmd(atcmd, ">", 500))
	{
		wifi_print("ERROR: AT+CIPSEND command failure\rin");
		return 0;
	}

	if( atcmd_send_data((unsigned char *)data, bytes, 1000))
	{
		wifi_print("ERROR: AT+CIPSEND send data failure\r\n");
		return 0;
	}

	return bytes;
}

int esp8266_sock_recv( unsigned char *buf, int size)
{
	char			*data = NULL;
	char			*ptr = NULL;

	int				len;
	int				rv;
	int				bytes;

	if( !buf || size <= 0)
	{
		wifi_print("ERROR: Invalid input arguments\r\n");
		return -1;
	}

	if( g_wifi_rxbytes <= 0 )
	{
		return 0;
	}

	/*No data arrive or not integrated */
	if( !(ptr=strstr(g_wifi_rxbuf, "+IPD,")) || !(data=strstr( ptr, ":")) )
	{
		return 0;
	}

	data++;
	bytes = atoi(ptr+strlen("+IPD,"));

	len = g_wifi_rxbytes - (data-g_uart2_rxbuf);

	if( len < bytes )
	{
		wifi_dbg("+IPD data not receive over, receive again later ...\r\n");
		return 0;
	}

	memset(buf, 0, size);
	rv = bytes>size ? size : bytes;
	memcpy(buf, data, rv);

	clear_atcmd_buf();

	return rv;
}




2.main.c

代码如下:

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2022 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <string.h>
#include <stdio.h>
#include "dht11.h"
#include "sht30.h"
#include "core_json.h"
#include "oled.h"
#include "esp8266.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */
#define FLAG_WIFI_CONNECTED		(1<<0)	/* WiFi连接路由器标志位*/
#define FLAG_SOCK_CONNECTED 	(1<<1)  /* Socket连接服务器标志位*/
/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
static int report_tempRH_json(void);
static int parser_led_json(char *json_string, int bytes);
static void proc_uart1_recv(void);
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

//  uint32_t		lux,noisy;
//  uint32_t		start = 0;
//  uint32_t		light_status = 0;
//  float temperature, humidity;

	uint32_t		last_time = 0; /*每隔3s上报一次,上一次上报的时间*/
	unsigned char	buf[256]; /*WiFi模块socket接收的buffer */
	int				rv;

	char			ipaddr[16];
	char			gateway[16];
	unsigned char	wifi_flag = 0;

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_TIM6_Init();
  MX_USART1_UART_Init();
  MX_ADC1_Init();
  MX_USART2_UART_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */

  //sysled_hearbeat();
  //beep_start(3,300);
  printf("Start BearKE1 5G NB_IoT Board Example Program v1.0\r\n");
  printf("Welcome Mr.deng!\r\n");

  OLED_Init();
  OLED_ShowBanner(TIME_1S*2);

  esp8266_module_init();

  while(1)
  {
	  /*wiFi没有连接上无线路由器的话,开始连接无线路由器并ping测试*/
	  if(!(wifi_flag&FLAG_WIFI_CONNECTED))
	  {
		  if(esp8266_join_network("SSID", "password"))//填写自己的WiFi信息
		  {
			  esp8266_module_init();
			  HAL_Delay(2000);
			  continue;
		  }
		  if(esp8266_get_ipaddr(ipaddr, gateway, sizeof(ipaddr)))
		  {
			  HAL_Delay(1000);
			  continue;
		  }
		  if(esp8266_ping_test(gateway))
		  {
			  HAL_Delay(1000);
			  continue;
		  }
		  wifi_flag |= FLAG_WIFI_CONNECTED; /* set wifi connected flag */
	  }

	  /*网络socket没有连接上Socket服务器的话就开始连接Socket服务器 */
	  if(!(wifi_flag&FLAG_SOCK_CONNECTED))
	  {
		  if(esp8266_sock_connect("192.168.0.120", 12345))//修改为自己对应的IP与端口
		  {
			  HAL_Delay(1000);
			  continue;
		  }
		  wifi_flag |= FLAG_SOCK_CONNECTED; /* set wifi connected flag */
	  }
	  /*接收并且打印Socket服务器发送过来的数据*/
//	  rv = esp8266_sock_recv(buf, sizeof(buf));
//	  printf(("%d\n"), rv);
	  if( (rv=esp8266_sock_recv(buf, sizeof(buf))) > 0 )
	  {
		  parser_led_json((char *)buf, rv);
		  printf("ESP8266 socket receive %d bytes data: %s\n", rv, buf);
	  }


	  /*定时发数据到Socket服务器*/
	  if(time_after(HAL_GetTick(), last_time+3000))
	  {
		  rv = report_tempRH_json();
		  if( rv == 0 )
		  {
			  printf("ESP8266 socket send message ok\n");
		  }
		  else
		  {
			  printf("ESP8266 socket send message failure, rv=%d\n", rv);
			  wifi_flag &= ~FLAG_SOCK_CONNECTED;/* clear socket connected flag */

			  if(esp8266_ping_test(gateway))
			  {
				  wifi_flag &= ~FLAG_WIFI_CONNECTED;/* clear wifi connected flag */
			  }
		  }

		  last_time = HAL_GetTick();/*update last report time */
	  }
//	  uart_forward();//后面使用无线通讯时只需要用Socket通信,不在需要此转发程序,如果没有注释掉会报错,并不会执行PC发的JOSN指令
#if 0
	  /*sht30*/
	  report_tempRH_json();
	  HAL_Delay(3000);

	  /*json上报*/
	  proc_uart1_recv();
	  if( report_tempRH_json() < 0 )
	  {
		  printf("ERROR: UART report temperature and relative humidity failure\r\n");
	  }
	  HAL_Delay(3000);

//	  if( DHT11_SampleData(&temperature, &humidity) < 0 )
//	  {
//		  printf("ERROR: DHT11 Sample Data failure\r\n");
//	  }
//	  else
//	  {
//		  printf("DHT11 Sample Temperature: %.3f Relative Humidity: %.3f\r\n", temperature, humidity);
//	  }
//
//
//	  HAL_Delay(1000);

//Tag:灯光
//	if( OFF == light_status )
//	{
//		adc_sample_lux_noisy(&lux, &noisy);
//		printf("Lux[%lu] Noisy[%lu]\r\n", lux, noisy);
//		if( lux<400 && noisy>800 )
//		{
//			printf("Turn Light on\r\n");
//			turn_relay(Relay2,ON);
//			turn_led(GreenLed,ON);//还得写turn_Led()
//			light_status = ON;
//
//			start = HAL_GetTick();
//		}
			HAL_Delay(5000);
//	}
//
//	else
//	{
//		if( time_after(HAL_GetTick(), start+15000) )
//		{
//			printf("Turn Light off\r\n");
//			turn_relay(Relay2,OFF);
//			turn_led(GreenLed,OFF);
//			turn_led(RedLed,ON);
//
//			HAL_Delay(1000);
//			turn_led(RedLed,OFF);
//
//			light_status = OFF;
//		}
//
//	}
//
//	HAL_Delay(10);
#endif
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = 1;
  RCC_OscInitStruct.PLL.PLLN = 20;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV7;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
  {
    Error_Handler();
  }
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_USART2
                              |RCC_PERIPHCLK_ADC;
  PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK2;
  PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1;
  PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLSAI1;
  PeriphClkInit.PLLSAI1.PLLSAI1Source = RCC_PLLSOURCE_HSE;
  PeriphClkInit.PLLSAI1.PLLSAI1M = 1;
  PeriphClkInit.PLLSAI1.PLLSAI1N = 9;
  PeriphClkInit.PLLSAI1.PLLSAI1P = RCC_PLLP_DIV7;
  PeriphClkInit.PLLSAI1.PLLSAI1Q = RCC_PLLQ_DIV2;
  PeriphClkInit.PLLSAI1.PLLSAI1R = RCC_PLLR_DIV6;
  PeriphClkInit.PLLSAI1.PLLSAI1ClockOut = RCC_PLLSAI1_ADC1CLK;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure the main internal regulator output voltage
  */
  if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
  {
    Error_Handler();
  }
}

/* USER CODE BEGIN 4 */
int parser_led_json(char *json_string, int bytes)
{
	JSONStatus_t result;
	char save;
	char *value;
	size_t valen;
	int i;

	printf("DBUG: Start parser JSON string: %s\r\n", json_string);
	result = JSON_Validate(json_string, bytes);
	/* JSON document is valid so far but incomplete */
	if( JSONPartial == result )
	{
		printf("WARN: JSON document is valid so far but incomplete!\r\n");
		return 0;
	}

	/* JSON document is not valid JSON */
	if( JSONSuccess != result )
	{
		printf("ERROR: JSON document is not valid JSON!\r\n");
		return -1;
	}
	/* Parser and set LED status */
	for(i=0; i<LedMax; i++)
	{
		result = JSON_Search( json_string, bytes, leds[i].name, strlen(leds[i].name), &value, &valen);
		if( JSONSuccess == result )
		{
			save = value[valen];
			value[valen] = '\0';

			if( !strncasecmp(value, "on", 2) )
			{
				printf("DBUG: turn %s on\r\n", leds[i].name);
				turn_led(i, ON);
			}
			else if( !strncasecmp(value, "off", 3) )
			{
				printf("DBUG: turn %s off\r\n", leds[i].name);
				turn_led(i, OFF);
			}

			value[valen] = save;
		}
	}
	return 1;
}

void proc_uart1_recv(void)
{
	if( g_uart1_bytes > 0 )
	{
		HAL_Delay(200);
		if( 0 != parser_led_json(g_uart1_rxbuf, g_uart1_bytes) )
		{
			clear_uart1_rxbuf();
		}
	}
}

/*json上报*/
//int report_tempRH_json(void)
//{
//	char buf[128];
//	float temperature, humidity;
//
//
//	if ( DHT11_SampleData(&temperature, &humidity) < 0 )
//	{
//		printf("ERROR: DHT11 Sample data failure\n");
//		return -1;
//	}
//
//
//	memset(buf, 0, sizeof(buf));
//	snprintf(buf, sizeof(buf), "{\"Temperature\":\"%.2f\", \"Humidity\":\"%.2f\"}", temperature, humidity);
//
//	HAL_UART_Transmit(&huart1 , (uint8_t *)buf, strlen(buf), 0xFFFF);
//
//	return 0;
//}

/*sht30采样*/
int report_tempRH_json(void)
{
	char buf[128];
	float temperature, humidity;
	uint32_t temp, humd;
	int	rv;

	if ( SHT30_SampleData(&temperature, &humidity) < 0 )
	{
		printf("ERROR: SHT30 Sample data failure\n");
		return -1;
	}


	memset(buf, 0, sizeof(buf));
	snprintf(buf, sizeof(buf), "{\"Temperature\":\"%.2f\", \"Humidity\":\"%.2f\"}", temperature, humidity);

	temp = (int)(temperature*100);
	humd = (int)(humidity*100);
	OLED_ShowTempHumdity(temp, humd, TIME_1S*2);

	rv = esp8266_sock_send((uint8_t *)buf, strlen(buf));
//	HAL_UART_Transmit(&huart1 , (uint8_t *)buf, strlen(buf), 0xFFFF);

	return rv>0 ? 0 : -2;
}
/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

注意:需要注释掉转发程序,不然无法控制Led灯

3.运行测试

stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络
stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络

stm32温湿度检测 wifi远程通信,网络Socket,STM32,stm32,单片机,嵌入式硬件,网络


总结

首先,对于STM32单片机在写博客之前学习了,所以没有,之后可能也会对之前的内容整理为博客,包括Led、DHT11、SHT30、I2C协议、SPI协议及JSON格式远程控制等,所以之前内容并未包括在此篇当中。

本篇为ESP8266 WiFi模块实时上报温湿度及控制LED灯项目笔记,主要介绍和应用了ESP8266 WiFi模块,编写了串口转发程序,学习了AT命令等,最终实现了ESP8266 WiFi模块实时上报温湿度及控制LED灯项目。

别忘了点赞 关注 收藏呀!文章来源地址https://www.toymoban.com/news/detail-811587.html

到了这里,关于【STM32】ESP8266 WiFi模块实时上报温湿度及控制LED灯项目笔记的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • STM32+ESP8266上传温湿度到onenet(HTTP)新手易懂指南

    哎,上云很简单的,但是我花了好几天因为各种莫名其妙的错误耽误了大量时间。所有很有必要总结一下 咳咳。但是我也比新手好不了多少, 以免误导新人,只教操作,理由核心不阐述,自己csdn找。 一、首先创建个HTTP协议onenet云平台(不会,就csdn里找,一堆堆) 对于初学

    2024年02月05日
    浏览(50)
  • STM32+ESP8266+QT客户端上位机显示DHT11温湿度与点灯

    目录 1、简介 2、硬件连接 3、上位机源码 3.1 widget.h 3.2 widget.c  3.3 显示图  4、下位机源码 4.1 cubemax配置  4.2 keil源码 本文使用STM32F103C8T6单片机使用单片机通过ESP8266WIFI模块与QT设计的上位机进行通讯,ESP8266设置AP模式。实现DHT11传感器温湿度的显示与远程控制LED小灯的亮灭

    2024年02月06日
    浏览(55)
  • STM32+ESP8266+APP连接阿里云监测环境温湿度系列笔记1:阿里云物联网平台配置及数据上传

            在数据传递过程中阿里云物联网平台相当于服务器,ESP8266为客户端,通过路由器连接服务器时需要在物联网平台创建设备,具体过程如下: 1. 首先 在物联网平台创建公共实例,并点击进入, 图1 2.可见设备接入物联网平台的整体流程如图2中红色方框所示, 接下

    2024年02月04日
    浏览(59)
  • STM32---WIFI模块ESP8266

    模块连接时基于串口方式连接,其模块与电脑(服务器)之间数据的发送与接收也是基于串口。 mode=1 :Station模式(连接到WIFI) mode=2:AP模式(自己作为WIFI源供其他连接) mode=3:AP+Station模式(以上两者模式的合并) 透传模式就是单片机通过串口形式与模块连接,而模块与上位

    2024年02月03日
    浏览(63)
  • STM32-连接wifi模块(esp8266)

    目录 1. ESP8266模块介绍 1.1. 系统结构图 1.2. 功能介绍  1.3. AT指令说明  2. STM32连接ESP8266 3. ESP8266示例 3.1. ESP8266透传模式  3.2. ESP8266上传数据例程 乐鑫智能互联平台——ESP8266 拥有高性能无线 SOC,是一个完整且自成体系的 WiFi 网络解决方案,能够独立运行,也可以作为 slave 搭

    2024年01月16日
    浏览(66)
  • 【STM32训练—WiFi模块】第二篇、STM32驱动ESP8266WiFi模块获取天气

    目录 第一部分、前言 1、获取心知天气API接口 2、硬件准备 第二部分、电脑串口助手调试WIFI模块获取天气 1、ESP8266获取天气的流程 2、具体步骤 第三部分、STM32驱动ESP8266模块获取天气数据 1、天气数据的解析 1.1、什么函数来解析天气数据? 2.1、解析后的数据如何使用?  2、

    2024年02月09日
    浏览(48)
  • 基于stm32 ESP8266WiFi模块的基本通信

    本篇涉及到的模块与工具为: 1. ATK-ESP8266wifi模块 2. USB-UART模块 3. 串口调试助手 提取链接:https://pan.baidu.com/s/17xRlpnjp8j-VvyD2VDxNXw?pwd=ufms 提取码:ufms 4. 网络调试助手 提取链接:https://pan.baidu.com/s/10spxZmwMGI70USlzkOzdxg?pwd=fmxe 提取码:fmxe 程序源码提取连接放置文章底部,需者自提

    2024年02月02日
    浏览(92)
  • stm32 的 ESP8266 wifi 模块 (ESP - 12s) 的使用

    1. ESP8266 的器件介绍 2. ESP2866外设  的引脚  3. 我所用的的ESP2866 的引脚图 4. 代码 编程的串口 5.wifi 的指令 1. AT     测试指令 2. AT+RST   重启模块 3. AT+GMR  查看版本信息 4. AT+RESTORE   恢复出厂设置 5.  AT+UART=115200,8,1,0,0   串口设置  串口号, 数据位, 停止位,  6. 

    2024年02月02日
    浏览(57)
  • 猿创征文 | 【STM32】ESP8266 wifi模块创建阿里云产品

    📑博客主页:@丘比特惩罚陆 💖欢迎关注:点赞收藏⭐留言✒ 💬系列专栏:嵌入式、web前端、笔记专栏 🎮 加入社区: 灌水乐园 🥇人生格言:选对方向,每走一步都是进步! ✒️欢迎大佬指正,一起学习!一起加油! 👏 希望大家能小手一动,帮忙点个赞! 😁资源邮箱

    2023年04月18日
    浏览(57)
  • STM32--ESP8266物联网WIFI模块(贝壳物联)--远程无线控制点灯

    本文适用于STM32F103C8T6等MCU,其他MCU可以移植,完整资源见文末链接 一、简介 随着移动物联网的发展,各场景下对于物联控制、数据上传、远程控制的诉求也越来越多,基于此乐鑫科技推出了便宜好用性价比极高的wifi物联模块——ESP8266,话不多少我们先来看看这个神奇的模

    2024年02月08日
    浏览(64)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包