Halcon边缘滤波器edges_image 算子

这篇具有很好参考价值的文章主要介绍了Halcon边缘滤波器edges_image 算子。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

Halcon边缘滤波器edges_image 算子

基于Sobel滤波器的边缘滤波方法是比较经典的边缘检测方法。除此之外,Halcon也提供了一些新式的边缘滤波器,如edges_image算子。它使用递归实现的滤波器(如Deriche、Lanser和Shen)检测边缘,也可以使用高斯导数滤波器检测边缘。此外,edges_image算子也提供了非极大值抑制和滞后阈值,使提取出的边缘更细化。edges_image 算子同样能返回精确的边缘梯度和方向,这一点比Sobel滤波器要好一些,但是相应地所花的时间也长一些。对一些强调精度而不注重运算时间的场合,可以使用edges_image算子来提高检测效率。此外,也可以结合使用sobel_fast滤波器,以提高检测的速度。
该算子的原型如下:

edges_image (Image: ImaAmp, ImaDir : Filter, Alpha, NMS, Low, High :)

其各参数含义如下。
参数1:Image为输入的单通道图像。
参数2:ImaAmp为输出的边缘梯度图像。
参数3:ImaDir 为输出的边缘方向图像。
参数4:Filter 为输入参数,表示选择的滤波算子。默认为canny,也可以选择derichel、derichel _int4、deriche2、deriche2 _int4、 lanserl、lanser2、mshen、shen、 sobel fast。
参数5:Alpha为输入参数,表示平滑的程度。值越小,表示平滑的程度越大。默认是0,也可以取0.1到1.1之间的值。
参数6:NMS 表示非极大值抑制。默认为nms,表示使用非极大值抑制;也可以设为none,表示不使用非极大值抑制。使用非极大值抑制可以使模糊的边界变得清晰,因为这步操作只留下边缘上梯度强度最大的点。
参数7和8:Low和High分别表示滞后阈值的低阈值和高阈值。边缘梯度比高阈值大的部分是可以被接受的;低于低阈值的部分将被排除;介于两者之间的,要看该像素是否与边缘点相连.相连的可以认为是边缘。
如图所示,其输入图像与图(a)所示的图像相同。这里使用了3种边缘提取方法进行对比。图(a)为使用canny 滤波器提取的,没有使用非极大值抑制的边缘梯度图像;图(b))为使用canny 滤波器提取的,使用了非极大值抑制的边缘梯度图像;图(c)在图(b)的基础上加入了灰度阈值处理,并描绘出了经阀值处理的框架图像。
Halcon边缘滤波器edges_image 算子,计算机视觉,opencv,人工智能
实现代码如下:

dev_close_window ()
read_image(Image,'data/flower')
rgb1_to_gray (Image, GrayImage)
gen_image_proto (Image, ImageCleared, 1)
dev_open_window (0, 0, 256, 256, 'black', WindowHandle1)
dev_open_window (0, 256, 256, 256, 'black', WindowHandle2)
dev_open_window (0, 512, 256, 256, 'black', WindowHandle3)
edges_image (GrayImage, ImaAmpGray, ImaDirGray, 'canny', 1, 'none', -1, -1)
edges_image (GrayImage, ImaAmpGrayNMS, ImaDirGrayHyst, 'canny', 1, 'nms',20, 40) 
*对非极大值抑制后的边缘梯度图像进行了阈值处理
threshold (ImaAmpGrayNMS, RegionGray, 1, 255) 
*提取边缘轮廓
skeleton (RegionGray, EdgesGray) 
*用于结果显示和对比
dev_set_window (WindowHandle1)
dev_display (ImageCleared) 
dev_display (ImaAmpGray) 
dev_set_window (WindowHandle2)
dev_display (ImageCleared) 
dev_display (ImaAmpGrayNMS) 
dev_set_window (WindowHandle3)
dev_display (ImageCleared) 
dev_display (EdgesGray)

该例中使用camny滤波器对灰度图像进行边缘检测,可以快速地获取边缘梯度与方向信息。代码中使用了不同参数的edges_image 算子提取边缘,并使用了非极大值抑制(Non-Maximum Suppression,NMS)。接着对经非极大值抑制的边缘梯度图像进行阈值处理,提取出较亮的边缘部分。
因为经非极大值抑制后,边缘仅剩下梯度最大的像素,所以经阈值处理提取出的像素就是图像的边缘。而如果使用未经非极大值抑制的图像,可能阈值处理会提取出过多的像素,无法理想地表现出边缘信息。
与edges_image 算子类似的还有edges_color算子,该算子可以用于提取彩色图像的边缘,其原型如下:

edges_color(Image : ImaAmp, ImaDir : Filter, Alpha, NMS, Low, High : )

其中第1个参数表示输入图像的类型为彩色图像,其他参数与edges_image算子类似。文章来源地址https://www.toymoban.com/news/detail-811814.html

到了这里,关于Halcon边缘滤波器edges_image 算子的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 使用C++设计滤波器(低通滤波器,高通滤波器,带通滤波器)

    以下是一个使用C++语言编写的基本低通滤波器的示例代码,它可以对输入信号进行滤波以降低高频成分: 在这个示例中,我们使用一个一阶滤波器来实现低通滤波器。该滤波器具有一个截止频率,所有高于该频率的信号成分都会被过滤掉。在构造函数中,我们根据采样率和截

    2024年02月11日
    浏览(38)
  • python实现陷波滤波器、低通滤波器、高斯滤波器、巴特沃斯滤波器

    在一幅图像中,其低频成分对应者图像变化缓慢的部分,对应着图像大致的相貌和轮廓,而其高频成分则对应着图像变化剧烈的部分,对应着图像的细节(图像的噪声也属于高频成分)。 低频滤波器,顾名思义,就是过滤掉或者大幅度衰减图像的高频成分,让图像的低频成分

    2024年02月11日
    浏览(41)
  • 高通滤波器,低通滤波器

    1.高通滤波器是根据像素与邻近像素的亮度差值来提升该像素的亮度。   确实容易看出,第三种效果最好。 2. 使用medianBlur()作为模糊函数,它对去除数字化的视频噪声非常有效。  从BGR色彩空间转灰度色彩空间   使用Laplacian()作为边缘检测函数,它会产生明显的边缘线条 

    2024年02月14日
    浏览(34)
  • 【图像处理:频率域平滑与锐化】理想滤波器,巴特沃思滤波器,高斯滤波器

    本文主要介绍频率域滤波器,此处的频率域是基于傅立叶变换得出。 在一幅图像中, 低频对应图像变化缓慢的部分 ,即图像大致外观和轮廓。 高频部分对应图像变化剧烈的部分即图像细节 。低通滤波器的功能是让低频率通过而滤掉或衰减高频,其作用是过滤掉包含在高频

    2024年02月04日
    浏览(50)
  • 【状态估计】卡尔曼滤波器、扩展卡尔曼滤波器、双卡尔曼滤波器和平方根卡尔曼滤波器研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 🎉3 参考文献 🌈4 Matlab代码实现 本文包括

    2024年02月08日
    浏览(43)
  • 现代信号处理——自适应滤波器(匹配滤波器)

    信号处理的目的是从噪声中提取信号,得到不受干扰影响的真正信号。采用的处理系统称为滤波器。 实时信号处理中,希望滤波器的参数可以根据系统或环境的变化进行更新,称为自适应滤波器。 滤波器的分类: 线性滤波器、非线性滤波器; FIR滤波器、IIR滤波器; 时域滤

    2023年04月27日
    浏览(67)
  • 【状态估计】粒子滤波器、Σ点滤波器和扩展/线性卡尔曼滤波器研究(Matlab代码实现)

    💥💥💞💞 欢迎来到本博客 ❤️❤️💥💥 🏆博主优势: 🌞🌞🌞 博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。 ⛳️ 座右铭: 行百里者,半于九十。 📋📋📋 本文目录如下: 🎁🎁🎁 目录 💥1 概述 📚2 运行结果 2.1 扩展卡尔曼滤波 2.2 线性卡尔曼滤波 

    2024年02月09日
    浏览(41)
  • 图像处理之理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器的matlab简单实现

    一、前言 高通滤波器的功能是让高频率通过而滤掉或衰减低频,其作用是 使图像得到锐化处理,突出图像的边界 。经理想高频滤波后的图像把信息丰富的低频去掉了,丢失了许多必要的信息**。一般情况下,高通滤波对噪声没有任何抑制作用**,若简单的使用高通滤波,图像质

    2023年04月25日
    浏览(41)
  • 图像处理之高通滤波器与低通滤波器

    目录 高频与低频区分: 高通滤波器: 1.傅里叶变换: 低通滤波器: 总结:         在了解图像滤波器之前,先谈一下如何区分图像的高频信息和低频信息,所谓高频就是该像素点与周围像素差异较大,常见于一副图像的边缘细节和噪声等;而低频就是该像素点与周围像素

    2023年04月09日
    浏览(46)
  • 现代信号处理——自适应滤波器(LMS自适应滤波器)

    一、自适应滤波简介 维纳滤波存在的问题: 适用于平稳随机信号的最佳滤波,对于非平稳的随机信号,其统计特性(相关函数)是随机的,因此无法估计其相关函数,此时的维纳滤波不适用; 维纳滤波器的参数是固定的,就不可能根据输入信号的变换去自动调整滤波器的参

    2024年02月01日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包