两个bbox的IoU计算步骤分析

这篇具有很好参考价值的文章主要介绍了两个bbox的IoU计算步骤分析。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

IoU:交并比,数值上等于交集面积除以并集面积。
两个bbox的IoU计算步骤分析,# 目标检测,目标检测
两个bbox的位置关系无外乎以上三种情况:(1)部分相交。(2)不相交。(3)包含。
两个bbox的IoU计算步骤分析,# 目标检测,目标检测
计算步骤:

  1. 计算交集(主要)
    相交部分左上角坐标为:
    两个bbox的IoU计算步骤分析,# 目标检测,目标检测
    相交部分右下角坐标为:
    两个bbox的IoU计算步骤分析,# 目标检测,目标检测
    那么相交部分的面积计算公式就是为:
    两个bbox的IoU计算步骤分析,# 目标检测,目标检测
    +1操作有人加有人不加,最后的max是防止负数。

  2. 计算并集
    两个bbox的IoU计算步骤分析,# 目标检测,目标检测两个bbox的IoU计算步骤分析,# 目标检测,目标检测

  3. 计算交并比
    相除即可,省略。文章来源地址https://www.toymoban.com/news/detail-811880.html

到了这里,关于两个bbox的IoU计算步骤分析的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【计算机视觉 | 目标检测】术语理解3:Precision、Recall、F1-score、mAP、IoU 和 AP

    在图像目标检测中,常用的评估指标包括以下几项: 精确率(Precision):也称为查准率,表示被分类为正类别的样本中真正为正类别的比例。计算公式为:Precision = TP / (TP + FP),其中TP是真正例(模型正确预测为正类别的样本数),FP是假正例(模型错误预测为正类别的样本数

    2024年02月13日
    浏览(43)
  • 将语义分割的标注mask转为目标检测的bbox

    1.1 labelme工具 语义分割的标签是利用 labelme 工具进行标注的,标注的样式如下: 1.2 语义分割的标签样式 实现步骤 (1) 利用标注的 json 文件生成 mask 图片 (2) 在mask图片中找到目标的 bbox 矩形框的左上角点和右下角点 (3) 将标注的信息写入xml文件(PascalVOC) 或者 yolo 的 txt 格式 2.

    2024年02月07日
    浏览(34)
  • 【论文阅读系列】NWD-Based Model | 小目标检测新范式,抛弃IoU-Based暴力涨点(登顶SOTA) 计算机视觉

    计算机视觉 参考:博客1 知乎2 在这里进行纪录分享,这是有用的资料,避免之后再寻找相当麻烦。 小目标检测是一个非常具有挑战性的问题,因为小目标只包含几个像素大小。作者证明,由于缺乏外观信息,最先进的检测器也不能在小目标上得到令人满意的结果。作者的主

    2024年02月05日
    浏览(55)
  • 目标检测扩(六)一篇文章彻底搞懂目标检测算法中的评估指标计算方法(IoU(交并比)、Precision(精确度)、Recall(召回率)、AP(平均正确率)、mAP(平均类别AP) )

    ​ 基本在目标检测算法中会碰到一些评估指标、常见的指标参数有:IoU(交并比)、Precision(精确度)、Recall(召回率)、AP(平均正确率)、mAP(平均类别AP)等。这些评估指标是在评估阶段评价训练的网络好坏的重要依据。 计算方法 IoU: 用来评价目标检测算法的对象定

    2024年04月13日
    浏览(46)
  • 目标检测中的IOU

    简单来说IOU就是用来度量目标检测中预测框与真实框的重叠程度。在图像分类中,有一个明确的指标准确率来衡量模型分类模型的好坏。其公式为: 这个公式显然不适合在在目标检测中使用。我们知道目标检测中都是用一个矩形框住被检测物体,又因为检测物体尺度不同,预

    2024年02月14日
    浏览(47)
  • 【目标检测】IOU介绍

    IOU全称Intersection over Union,交并比。 IoU是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxex)的任务都可以用IoU来进行测量。 在目标识别中,我们的预测框与实际框的某种比值就是IOU 这是IOU的计

    2024年02月05日
    浏览(37)
  • 目标检测结果IOU不同取值的含义 IoU=0.50与IoU=0.50:0.95

    Average Precision (AP)和Average Recall (AR) AP是单个类别平均精确度,而mAP是所有类别的平均精确度。 AP是Precision-Recall Curve曲线下面的面积。     曲线面积越大说明AP的值越大,类别的检测精度就越高。Recall是召回率,也叫查全率,Precision是准确率,也叫查准率,两者是相互矛盾的指

    2024年02月09日
    浏览(36)
  • YOLO目标检测IOU-thres理解

    YOLO 检测中有两个阈值参数,conf置信度比较好理解,但是IOU thres比较难理解。 IOU thres过大容易出现一个目标多个检测框;IOU thres过小容易出现检测结果少的问题。 以实例来理解:

    2024年02月16日
    浏览(36)
  • 【目标检测中对IoU的改进】GIoU,DIoU,CIoU的详细介绍

    IoU为交并比,即对于pred和Ground Truth:交集/并集 1、IoU可以作为评价指标使用,也可以用于构建IoU loss = 1 - IoU 缺点: 2、对于pred和GT相交的情况下,IoU loss可以被反向传播,因为IoU不为0,可以计算梯度。但是二者不相交的话,梯度将会为0,无法优化。 3、pred和GT不相交时,Io

    2024年02月12日
    浏览(41)
  • 目标检测中的损失函数IoU、GIoU、DIoU、CIoU、SIoU

    IoU损失是目标检测中最常见的损失函数,表示的就是真实框和预测框的交并比,数学公式如下: I o U = ∣ A ∩ B ∣ ∣ A ∪ B ∣ IoU =frac{|A cap B|}{|A cup B|} I o U = ∣ A ∪ B ∣ ∣ A ∩ B ∣ ​ L o s s I o U = 1 − I o U Loss_{IoU}=1-IoU L o s s I o U ​ = 1 − I o U IoU损失会有两个主要的缺点 当

    2024年02月04日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包