Python笔记10-数据可视化练习折线图

这篇具有很好参考价值的文章主要介绍了Python笔记10-数据可视化练习折线图。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

JSON数据

JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据 。本质上是一个带有特定格式的字符串
主要功能:可以在各个编程语言中流通,负责在不同编程语言中进行数据传递和交互.
JSON示例:

# json数据的格式可以是: 
{"name":"admin","age":18} 
# 也可以是:  
[{"name":"admin","age":18},{"name":"root","age":16},{"name":"张三","age":20}] 

Python数据和Json数据的相互转化

# 导入json模块 
import json 

# 准备符合格式json格式要求的python数据 
data = [{"name": "老王", "age": 16}, {"name": "张三", "age": 20}]
 
# 通过 json.dumps(data) 方法把python数据转化为了 json数据 
data = json.dumps(data) 

# 通过 json.loads(data) 方法把json数据转化为了 python数据 
data = json.loads(data)

pyecharts模块

Echarts 是个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可. 而 Python 是门富有表达力的语言,很适合用于数据处理. 当数据分析遇上数据可视化时pyecharts 诞生了。
pyecharts安装
使用在前面学过的pip命令即可快速安装PyEcharts模块
pip install pyecharts
Python笔记10-数据可视化练习折线图,python,python,pyecharts,折线图

构建折线图

编写如下代码,并运行

from pyecharts.charts import  Line
line =  Line()
line.add_xaxis(["中国","美国","英国"])
line.add_yaxis("GDP",[30,34,24])
line.render()

会看到源码目录下多了一个html文件
Python笔记10-数据可视化练习折线图,python,python,pyecharts,折线图

浏览器打开可以看到折线图
Python笔记10-数据可视化练习折线图,python,python,pyecharts,折线图

全局配置

全局配置选项可以通过set_global_opts方法来进行配置, 可以配置:
图表的标题、图例、鼠标移动效果、工具栏等整体配置项

from pyecharts.charts import  Line
from pyecharts.options import TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts
line =  Line()
line.add_xaxis(["中国","美国","英国"])
line.add_yaxis("GDP",[30,34,24])

line.set_global_opts(
    title_opts=TitleOpts(title="GDP展示", pos_left="center", pos_bottom="1%"),
    legend_opts=LegendOpts(is_show=True),
    toolbox_opts=ToolboxOpts(is_show=True),
    visualmap_opts=VisualMapOpts(is_show=True),
)
line.render()

更具体的配置可以参考官网说明

绘制疫情数据折线图

准备三个数据文件,内容如下:
Python笔记10-数据可视化练习折线图,python,python,pyecharts,折线图
Python笔记10-数据可视化练习折线图,python,python,pyecharts,折线图
编写代码

from pyecharts.charts import  Line
from pyecharts.options import LabelOpts, TitleOpts, LegendOpts, ToolboxOpts, VisualMapOpts
import json
# 获取文件内容
f_us = open("D:\\works\\pythonworks\\testpro\\美国.txt", "r", encoding="UTF-8")
us_data = f_us.read()   # 美国的全部内容
f_jp = open("D:\\works\\pythonworks\\testpro\\日本.txt", "r", encoding="UTF-8")
jp_data = f_jp.read()
f_in = open("D:\\works\\pythonworks\\testpro\\印度.txt", "r", encoding="UTF-8")
in_data = f_in.read()
# 替换开头的前缀字符串
us_data = us_data.replace("jsonp_1629344292311_69436(", "")
jp_data = jp_data.replace("jsonp_1629350871167_29498(", "")
in_data = in_data.replace("jsonp_1629350745930_63180(", "")

# 去掉不合JSON规范的结尾
us_data = us_data[:-2]
jp_data = jp_data[:-2]
in_data = in_data[:-2]

print(jp_data)
# JSON转Python字典
us_dict = json.loads(us_data)
jp_dict = json.loads(jp_data)
in_dict = json.loads(in_data)

# 获取trend key
us_trend_data = us_dict['data'][0]['trend']
jp_trend_data = jp_dict['data'][0]['trend']
in_trend_data = in_dict['data'][0]['trend']


# 获取日期数据,用于x轴,取2020年(到314下标结束)
us_x_data = us_trend_data['updateDate'][:314]
jp_x_data = jp_trend_data['updateDate'][:314]
in_x_data = in_trend_data['updateDate'][:314]

# 获取确认数据,用于y轴,取2020年(到314下标结束)
us_y_data = us_trend_data['list'][0]['data'][:314]
jp_y_data = jp_trend_data['list'][0]['data'][:314]
in_y_data = in_trend_data['list'][0]['data'][:314]



line =  Line()
line.add_xaxis(us_x_data)   # x轴是公用的,所以使用一个国家的数据即可
# 添加y轴数据
line.add_yaxis("美国确诊人数", us_y_data, label_opts=LabelOpts(is_show=False))     # 添加美国的y轴数据
line.add_yaxis("日本确诊人数", jp_y_data, label_opts=LabelOpts(is_show=False))     # 添加日本的y轴数据
line.add_yaxis("印度确诊人数", in_y_data, label_opts=LabelOpts(is_show=False))     # 添加印度的y轴数据

# 设置全局选项
line.set_global_opts(
    # 标题设置
    title_opts=TitleOpts(title="2020年美日印三国确诊人数对比折线图", pos_left="center", pos_bottom="1%")
)
line.render()
# 关闭文件对象
f_us.close()
f_jp.close()
f_in.close()

运行结果如下

Python笔记10-数据可视化练习折线图,python,python,pyecharts,折线图文章来源地址https://www.toymoban.com/news/detail-811938.html

到了这里,关于Python笔记10-数据可视化练习折线图的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包