上一篇博客我们对string类函数进行了讲解,今天我们就对string类进行模拟实现,以便于大家更加深入地了解string类函数的应用
由于C++的库里面本身就有一个string类,所以我们为了不让编译器混淆视听,我们可以首先将我们自己模拟实现的string类放入一个我们自己定义的命名空间内,这里我将命名空间命名为jh(本人名字首字母缩写):
namespace jh
{
class string
{
};
}
然后就是我们将string类的类的成员进行定义:
string类实际就是字符串,它的几个成员有capacity(容量),size(字符拆串当前字符个数),str(字符串的指针)
namespace jh
{
class string
{
private:
size_t _capacity;
size_t _size;
char* _str;
};
}
下面我们就对string类的大部分经常使用的成员函数进行模拟实现:
构造函数
首先定义一个构造函数,用于创建string类,这里大家用到了strlen和strcpy函数,所以要带上头文件string.h
还有一个需要注意的点:
这里为_str开辟空间我们需要开辟capacity+1个字符的空间,因为要为\0预留一个字符的空间
string(const char* str = "")
{
_size = strlen(str);
_capacity = _size;
_str = new char[_capacity + 1];
strcpy(_str, str);
}
拷贝构造函数
string类的拷贝构造函数也很简单:
和构造函数差不多
string(const string& s)
{
_str = new char[s._capacity + 1];
_size = s._size;
_capacity = s._capacity;
strcpy(_str, s._str);
}
析构函数
析构函数也很简单,直接将size和capacity置零,指针置为空,将str的空间用delete删除,记得带上[],方便通用语字符和字符串
~string()
{
delete[] _str;
_str = nullptr;
_size = 0;
_capacity = 0;
}
赋值操作符重载
赋值操作符是一个很常用的操作符,我们的前提两个字符串不相等,如果相等就没必要进行操作,直接返回*this
不相等的情况下我们首先开辟一个tmp的空间将字符串拷贝进去,将tmp赋予_str,然后将size和capacity赋值,这样就完成了赋值操作符的重载
string& operator=(const string& s)
{
if (this != &s)
{
char* tmp = new char[s._capacity + 1];
strcpy(tmp, s._str);
_str = tmp;
_capacity = s._capacity;
_size = s._size;
}
return *this;
}
返回字符串函数
很简单,但是要记得在函数前加上const修饰函数返回值,函数后加上const修饰_str,避免权限的放大
const char* c_str() const
{
return _str;
}
返回size函数
同样很简单,返回_size,加上const避免权限的放大
size_t size() const
{
return _size;
}
下标访问符号重载
下标访问在字符串中很常用,我们需要将其进行断言,如果pos大于size就毫无意义,需要注意的就是带上const,避免权限的放大
const char& operator[](size_t pos)const
{
assert(pos <= _size);
return _str[pos];
}
char& operator[](size_t pos)
{
assert(pos <= _size);
return _str[pos];
}
迭代器
迭代器主要分为const和非const
我们用typedef将char*命名为iterator
begin函数就直接返回_str
end函数就直接返回 str+size
typedef char* iterator;
typedef const char* const_iterator;
iterator begin()
{
return _str;
}
iterator end()
{
return _str + _size;
}
const_iterator begin() const
{
return _str;
}
const_iterator end() const
{
return _str + _size;
}
reserve函数
reserve函数是一个扩容函数,但是他只是改变capacity,不会改变size,并且不会缩容,缩容很是麻烦,所以只有当n>capacity时才会进行扩容
void reserve(size_t n)
{
if(n>_capacity)
{
char* tmp = new char[n + 1];
strcpy(tmp, _str);
delete[] _str;
_str = tmp;
_capacity = n;
}
}
resize函数
resize函数和reserve函数的区别就是resize改变capacity的同时也会改变size,但是当n时小于等于size的时候不会缩容,但是\0的位置被放到了n位置
当size小于n的时候我们就需要把后面的n-size个位置的元素置为ch(\0),同时size也进行改变
void resize(size_t n, char ch = '\0')
{
if (n <= _size)
{
_str[n] = '\0';
_size = n;
}
else
{
reserve(n);
while (_size < n)
{
_str[_size] = ch;
_size++;
}
_str[_size] = '\0';
}
}
追加函数
追加函数分为两种,一种是追加字符的pushback,一种时追加字符串的append,我们要注意append加上const,避免权限的放大,当追加后容量不够我们就要进行扩容
void pushback(char ch)
{
if (_size == _capacity)
{
size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;
}
_str[_size] = ch;
_size++;
_str[_size] = '\0';
}
void append(const char* str)
{
size_t len = strlen(str);
if (len > +_size > _capacity)
{
reserve(_capacity+len);
}
strcpy(_str + _size, str);
_size += len;
}
+=操作符重载
这个我们就可以复用pushback和append
string& operator+=(char ch)
{
push_back(ch);
return *this;
}
string& operator+=(const char* str)
{
append(str);
return *this;
}
find函数
同样的find函数分为字符串和字符类型
这里的pos就用到缺省值,没有给就是0,找不到就是返回-1,也就是通常所说的npos
size_t find(char ch, size_t pos = 0)
{
for (size_t i = pos; i < _size; i++)
{
if (_str[i] == ch)
{
return i;
}
}
return npos;
}
size_t find(const char* sub, size_t pos = 0)
{
const char* p = strstr(_str + pos, sub);
if (p)
{
return p - _str;
}
else
{
return npos;
}
}
substr函数
substr函数时去字符串
它有两个参数,一个是pos一个是len,表示从pos位置开始取len长度的字符串,当len+pos大于字符串长度时有多少取多少,开辟空间进行追加即可
npos就是-1,给了默认缺省值
string substr(size_t pos, size_t len = npos)
{
string s;
size_t end = pos + len;
if (len == npos || pos + len >= _size) // 有多少取多少
{
len = _size - pos;
end = _size;
}
s.reserve(len);
for (size_t i = pos; i < end; i++)
{
s += _str[i];
}
return s;
}
insert函数
insert函数也同样分为插入字符串和插入字符,第一步就是进行断言,如果插入位置pos是大于等于size,那么就毫无意义
当size和capacity已经相等时就需要扩容,为了减少扩容,所以我们一次性扩容两倍
当size加上插入字符串长度len大于capacity时,我们也需要扩容,直接扩容size+len即可,这里我为了方便大家的理解画一张图:
大家可以根据数据结构的知识构思一下我所说的bug
并且在字符串插入我们要用strncpy,而不是strcpy,因为strcpy时遇到\0才终止拷贝字符串,但是我们这里拷贝字符串不需要把\0拷进去,考进去的话会引发错误,所以我们要用ncpy来拷贝len个字符,不包括\0
void insert(size_t pos, char ch)
{
assert(pos <= _size);
if (_size == _capacity)
{
reserve(_capacity == 0 ? 4 : _capacity * 2);
}
size_t end = _size + 1;
while (end > pos)
{
_str[end] = _str[end - 1];
end--;
}
_str[pos] = ch;
_size++;
}
void insert(size_t pos, const char* str)
{
assert(pos <= _size);
size_t len = strlen(str);
if (_size + len > _capacity)
{
reserve(_size + len);
}
size_t end = _size;
while (end >= pos)
{
_str[end + len] = _str[end];
end--;
}
strncpy(_str + pos, str, len);
_size += len;
}
erase函数
首先要做的还是断言,pos是要小于size的
当长度len时负数时或者pos+len大于等于size时,有多少删除多少,直接将pos位置置为\0
当长度足够时,我们就需要将pos+len后面的字符移动到pos到pos+len的区间内来:
请看图:
void erase(size_t pos, size_t len = -1)
{
assert(pos < _size);
if (len == -1 || pos + len >= _size)
{
_str[pos] = '\0';
_size = pos;
}
else
{
size_t begin = pos + len;
while (begin <= _size)
{
_str[begin - len] = _str[begin];
begin++;
}
_size -= len;
}
操作符重载
操作符重载很简单,我们用strcmp函数,并且可以进行复用
bool operator<(const string& s) const
{
return strcmp(_str, s._str) < 0;
}
bool operator==(const string& s) const
{
return strcmp(_str, s._str) == 0;
}
bool operator<=(const string& s) const
{
return *this < s || *this == s;
}
bool operator>(const string& s) const
{
return !(*this <= s);
}
bool operator>=(const string& s) const
{
return !(*this < s);
}
bool operator!=(const string& s) const
{
return !(*this == s);
}
clear函数
直接将0位置置为\0,同时size置0
void clear()
{
_str[0] = '\0';
_size = 0;
}
流插入和流提取
流插入和提取要放到模拟实现string类的外面,但是要放入命名空间jh内
流插入很简单,直接用语法糖
ostream& operator<<(ostream& out, const string& s)
{
for (auto ch : s)
out << ch;
return out;
}
流提取就需要理解透彻一点:
首先提取时我们会有一个缓冲区,所以我们每次提取之前需要用clear清理一次缓冲区
其次为了减少扩容,我们适当地开辟空间,等到该空间满了直接用+=赋予字符串s
这里需要用get函数来提取字符
然后用while循环,当当前位置的字符ch不等于空格并且不等于换行符时才能放入开辟好的buff空间里,当i等于128时,我们将i位置置为\0,将buff空间存储的字符串用+=放入string类对象s,同时i置为0,再进行一次get提取,判断输入的in对象是否还有(例如:输入xy yz,如果不用whie循环的条件和再次get的话,xy yz就只能提取xy)
当i不等于0时我们也需要将i位置置为\0,并且将buff+=给s
istream& operator>>(istream& in, string& s)
{
s.clear();
char buff[129];
size_t i = 0;
char ch;
ch = in.get();
while (ch != ' ' && ch != '\n')
{
buff[i++] = ch;
if (i == 128)
{
buff[i] = '\0';
s += buff;
i = 0;
}
ch = in.get();
if (i != 0)
{
buff[i] = '\0';
s += buff;
}
return in;
}
}
好了,今天的分享到这里就结束了,感谢大家的支持!文章来源:https://www.toymoban.com/news/detail-811999.html
完整代码如下:文章来源地址https://www.toymoban.com/news/detail-811999.html
#include<iostream>
#include<assert.h>
using namespace std;
namespace jh
{
class string
{
public:
string(const char* str = "")
{
_size = strlen(str);
_capacity = _size;
_str = new char[_capacity + 1];
strcpy(_str, str);
}
string(const string& s)
{
_str = new char[s._capacity + 1];
_size = s._size;
_capacity = s._capacity;
strcpy(_str, s._str);
}
~string()
{
delete[] _str;
_str = nullptr;
_size = 0;
_capacity = 0;
}
string& operator=(const string& s)
{
if (this != &s)
{
char* tmp = new char[s._capacity + 1];
strcpy(tmp, s._str);
_str = tmp;
_capacity = s._capacity;
_size = s._size;
}
return *this;
}
const char* c_str() const
{
return _str;
}
size_t size() const
{
return _size;
}
const char& operator[](size_t pos)const
{
assert(pos <= _size);
return _str[pos];
}
char& operator[](size_t pos)
{
assert(pos <= _size);
return _str[pos];
}
typedef char* iterator;
typedef const char* const_iterator;
iterator begin()
{
return _str;
}
iterator end()
{
return _str + _size;
}
const_iterator begin() const
{
return _str;
}
const_iterator end() const
{
return _str + _size;
}
void reserve(size_t n)
{
if(n>_capacity)
{
char* tmp = new char[n + 1];
strcpy(tmp, _str);
delete[] _str;
_str = tmp;
_capacity = n;
}
}
void push_back(char ch)
{
if (_size == _capacity)
{
size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;
}
_str[_size] = ch;
_size++;
_str[_size] = '\0';
}
void append(const char* str)
{
size_t len = strlen(str);
if (len > +_size > _capacity)
{
reserve(_capacity+len);
}
strcpy(_str + _size, str);
_size += len;
}
void resize(size_t n, char ch = '\0')
{
if (n <= _size)
{
_str[n] = '\0';
_size = n;
}
else
{
reserve(n);
while (_size < n)
{
_str[_size] = ch;
_size++;
}
_str[_size] = '\0';
}
}
string& operator+=(char ch)
{
push_back(ch);
return *this;
}
string& operator+=(const char* str)
{
append(str);
return *this;
}
size_t find(char ch,size_t pos=0)
{
for (size_t i = pos; i < _size; i++)
{
if (_str[i] == ch)
return i;
}
return -1;
}
size_t find(const char* str, size_t pos = 0)\
{
char* p = strstr(_str+pos, str);
if (p)
{
return p - _str;
}
else
{
return -1;
}
}
string substr(size_t pos, size_t len=-1)
{
string s;
size_t end = pos + len;
if (len == -1 || pos+len >= _size)
{
len = _size - pos;
end = _size;
}
s.reserve(len);
for (size_t i = pos; i < end; i++)
{
s += _str[i];
}
return s;
}
void insert(size_t pos, char ch)
{
assert(pos <= _size);
if (_size == _capacity)
{
reserve(_capacity == 0 ? 4 : _capacity * 2);
}
size_t end = _size + 1;
while (end > pos)
{
_str[end] = _str[end - 1];
end--;
}
_str[pos] = ch;
_size++;
}
void insert(size_t pos, const char* str)
{
assert(pos <= _size);
size_t len = strlen(str);
if (_size + len > _capacity)
{
reserve(_size + len);
}
size_t end = _size;
while (end >= pos)
{
_str[end + len] = _str[end];
end--;
}
strncpy(_str + pos, str, len);
_size += len;
}
void erase(size_t pos, size_t len = -1)
{
assert(pos < _size);
if (len == -1 || pos + len >= _size)
{
_str[pos] = '\0';
_size = pos;
}
else
{
size_t begin = pos + len;
while (begin <= _size)
{
_str[begin - len] = _str[begin];
begin++;
}
_size -= len;
}
}
bool operator<(const string& s) const
{
return strcmp(_str, s._str) < 0;
}
bool operator==(const string& s) const
{
return strcmp(_str, s._str) == 0;
}
bool operator<=(const string& s) const
{
return *this < s || *this == s;
}
bool operator>(const string& s) const
{
return !(*this <= s);
}
bool operator>=(const string& s) const
{
return !(*this < s);
}
bool operator!=(const string& s) const
{
return !(*this == s);
}
void clear()
{
_str[0] = '\0';
_size = 0;
}
private:
size_t _capacity;
size_t _size;
char* _str;
public:
const static size_t npos;
};
const size_t string::npos = -1;
ostream& operator<<(ostream& out, const string& s)
{
for (auto ch : s)
out << ch;
return out;
}
istream& operator>>(istream& in, string& s)
{
s.clear();
char buff[129];
size_t i = 0;
char ch;
ch = in.get();
while (ch != ' ' && ch != '\n')
{
buff[i++] = ch;
if (i == 128)
{
buff[i] = '\0';
s += buff;
i = 0;
}
ch = in.get();
if (i != 0)
{
buff[i] = '\0';
s += buff;
}
return in;
}
}
}
到了这里,关于string类的模拟实现的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!