相关系数(皮尔逊相关系数和斯皮尔曼相关系数)

这篇具有很好参考价值的文章主要介绍了相关系数(皮尔逊相关系数和斯皮尔曼相关系数)。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

 本文借鉴了数学建模清风老师的课件与思路,可以点击查看链接查看清风老师视频讲解:5.1 对数据进行描述性统计以及皮尔逊相关系数的计算方法_哔哩哔哩_bilibili

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

注:直接先看 ( 三、两个相关系数系数的比较 ) 部分!!!

目录

​编辑

一、数据的描述性统计分析 

二、皮尔逊相关系数

2.1注意事项

2.2 SPSS绘制散点图

2.3 MATLAB计算皮尔逊相关系数

2.3.1 MATLAB计算皮尔逊相关系数

2.3.2 相关系数矩阵的美化

2.4 对皮尔逊相关系数进行假设检验(p值判断法)

2.4.1 假设检验

2.4.2 MATLAB和SPSS计算p值

①MATLAB计算p值

②spss计算p值

2.5 正态分布检验

2.5.1 JB检验(大样本n > 30)

2.5.2 Shapiro-wilk检验(小样本 3 ≤ n ≤ 50)

2.5.3 QQ图

二、斯皮尔曼相关系数

2.1 斯皮尔曼相关系数

2.2 斯皮尔曼相关系数的计算

2.3 两种相关系数结果的对比

2.4 对斯皮尔曼相关系数进行假设检验(p值判断法)

①matlab计算P值

②SPSS计算p值

三、两个相关系数系数的比较


一、数据的描述性统计分析 

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

clear;clc
%% 统计描述
MIN = min(Test);  % 每一列的最小值
MAX = max(Test);   % 每一列的最大值
MEAN = mean(Test);  % 每一列的均值
MEDIAN = median(Test);  %每一列的中位数
SKEWNESS = skewness(Test); %每一列的偏度
KURTOSIS = kurtosis(Test);  %每一列的峰度
STD = std(Test);  % 每一列的标准差
RESULT = [MIN;MAX;MEAN;MEDIAN;SKEWNESS;KURTOSIS;STD]  %将这些统计量放到一个矩阵中表示

二、皮尔逊相关系数

2.1注意事项

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模简单来说,就是在进行皮尔逊相关系数之前需要绘制这两个变量的散点图查看是否为线性关系,若是就用皮尔逊,若不是就用斯皮尔曼。

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

上图为一般情况下相关系数的解释,实际可根据题目背景解释即可,只要言之有理即可。

2.2 SPSS绘制散点图

以这个数据为例:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

 这里使用Spss比较方便: 导入数据 - 图形 - 旧对话框 - 散点图/点图 - 矩阵散点图 - 将指标拖入矩阵变量(M)- 确定

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

 这里用高版本的绘制(我用的27)感觉好看一点,如下:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

注意:在得到变量之间为线性关系的时候才能继续下面的计算步骤。

2.3 MATLAB计算皮尔逊相关系数

2.3.1 MATLAB计算皮尔逊相关系数

R = corrcoef(Test)   % correlation coefficient

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

得到的R即为相关系数矩阵,其中1为自己和自己的相关性,自然为1,0.0665为第一列和第二列的相关系数,-0.2177为第一列和第三列的相关系数,0.0954为第一列和第三列的相关系数,其他的以此类推。

2.3.2 相关系数矩阵的美化

关于这里的美化,具体操作看该系列第一个视频38分钟左右处。

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

2.4 对皮尔逊相关系数进行假设检验(p值判断法)

2.4.1 假设检验

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

 相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

简单来说,就是当算出来的p值<0.01,<.05,<0.10的情况下,即在90%,95%,99%的置信水平上,拒绝原假设r = 0,因此r是显著的不为0的。(实际做的时候,就把假设和备择假设写上,然后算出p值,接着就把这段话写下来)

2.4.2 MATLAB和SPSS计算p值

①MATLAB计算p值

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

%% 计算各列之间的相关系数以及p值
[R,P] = corrcoef(Test)
% 在EXCEL表格中给数据右上角标上显著性符号吧
P < 0.01  % 标记3颗星的位置
(P < 0.05) .* (P > 0.01)  % 标记2颗星的位置
(P < 0.1) .* (P > 0.05) % % 标记1颗星的位置

 但是MATLAB计算出来的p值放在Excle里,不好标记*,所以可以采用Spss。

②spss计算p值

SPSS里 分析 - 相关 - 双变量- 把变量托到右边 - 确定 。结果如下图,和matlab的结果一样:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

2.5 正态分布检验

2.5.1 JB检验(大样本n > 30)

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

% 用循环检验所有列的数据
n_c = size(Test,2);  % number of column 数据的列数
H = zeros(1,6);  % 初始化节省时间和消耗  
P = zeros(1,6);
for i = 1:n_c
    [h,p] = jbtest(Test(:,i),0.05);
    H(i)=h;
    P(i)=p;
end
disp(H)
disp(P)

代码里的6是因为这里的数据变量有6个,0.05代表现在是95%的置信水平,实际中可根据需要自行调整。输出的H为1就是在95%的置信水平下拒绝原假设,即不服从正态分布,0则是不拒绝原假设,即服从正态分布;P则是p值。

2.5.2 Shapiro-wilk检验(小样本 3 ≤ n ≤ 50)

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

结果如下:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

只需要看最后一列即可,都小于0.01,说明在99%的置信水平下,拒绝原假设,即不服从正态分布。 

2.5.3 QQ图

要求样本量非常大,不太推荐用QQ图,用前面两个检验即可。

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

MATLAB画QQ图的命令:

% Q-Q图
qqplot(Test(:,1))

二、斯皮尔曼相关系数

2.1 斯皮尔曼相关系数

第一种定义:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

第二种定义:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

2.2 斯皮尔曼相关系数的计算

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

第一种为只有两个变量时使用,第二种为有多个变量时使用。

2.3 两种相关系数结果的对比

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

2.4 对斯皮尔曼相关系数进行假设检验(p值判断法)

小样本情况下:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

大样本情况下:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

①matlab计算P值

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

②SPSS计算p值

SPSS里 分析 - 相关 - 双变量- 把变量托到右边 - 勾选上斯皮尔曼 - 确定 。

结果如下,和MATLAB结果一样的:

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

三、两个相关系数系数的比较

相关系数(皮尔逊相关系数和斯皮尔曼相关系数),数学建模,数学建模

总结下来就是:

用相关系数前,先对数据进行描述性统计,然后画散点图看数据是否是线性的,接着对数据做正态性检验,满足正态性检验后再计算皮尔逊相关系数并看是不是显著的。(进行假设检验的前提是通过正态分布检验)

如果没有通过检验则用斯皮尔曼相关系数。文章来源地址https://www.toymoban.com/news/detail-812121.html

到了这里,关于相关系数(皮尔逊相关系数和斯皮尔曼相关系数)的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • js计算皮尔逊相关系数

    代码如下; 调用:  效果:

    2024年01月25日
    浏览(39)
  • 斯皮尔曼(spearman)相关系数python代码实现

    斯皮尔曼等级相关系数 (简称 等级相关系数 ,或称 秩相关系数 ,英语:Spearman\\\'s rank correlation coefficient或Spearman\\\'s ρ)。一般用 或者 表示。它是衡量两个变量的相关性的无母数指标。它利用单调函数评价两个统计变量的相关性。若数据中没有重复值,且当两变量完全单调相

    2024年01月18日
    浏览(35)
  • 数学建模.皮尔逊相关系数假设检验

    一、步骤 查表找临界值 二、更好的方法 三、使用条件 作图可以使用spss 这个图对不对还不好说,因为还没进行正态分布的验证 四、正态分布验证 (1)JB检验 所以之前的数据的那个表是错的,因为不满足正态分布 (2)Shapiro-wilk检验 看最后一列,为p值,由此观之,不符合原

    2024年01月18日
    浏览(46)
  • 数学建模学习笔记-皮尔逊相关系数

    内容:皮尔逊相关系数 一.概念:是一个和线性线关的相关性系数 1.协方差概念: 协方差受到量纲的影响因此需要剔除 2.相关性的误区 根据这个结论,我们在计算该系数之前需要确定是否为线性函数 二.相关性的计算 1.Matlab:只含相关性不含假设检验:下面第三大点讲解假设

    2024年02月20日
    浏览(41)
  • 【数学建模】皮尔逊相关系数和假设检验

    为了说明两组数据之间的相关性,例如身高与50米跑步的成绩,我们引入相关系数,本文先介绍person相关系数以及在特定情况下的使用方法。 Person相关系数在 满足特定条件下 用来衡量两个变量之间的相关性。 在正式介绍person相关系数之前,我们先引入协方差的概念 协方差是

    2024年02月09日
    浏览(36)
  • [皮尔逊相关系数corrwith]使用案例:电影推荐系统

    协同过滤算法用于发现用户与物品之间的相关性,主要有两种:基于用户的和基于物品的。 基于用户: 用户1购买了物品A、B、C、D,并给了好评;而用户2也买了A、B、C,那么认为用户1和用户2是同类型用户,也可以把D推荐给用户2。 基于物品: 物品A和物品B都被用户1、2、

    2024年02月10日
    浏览(37)
  • 使用Python计算皮尔逊相关系数,并用热力图展示

           由于是自我练习的笔记,所以这里先通过Pandas随机生成一部分时序数据,然后再调用corr()函数来计算皮尔逊相关系数,并把计算结果先展示输出出来,最后通过热力图的方式把计算结果展现出来。    下面是开发的具体过程: 1、首先导入需要的算法包 2、生成数据(

    2024年02月09日
    浏览(33)
  • 皮尔逊相关系数及代码实现(C语言+MATLAB)

    皮尔逊相关系数,常用于度量两个变量X和Y之间的相关性(线性相关)。本文通过介绍其 概念定义、数学公式 ,进而引出其 适用场合 ,并基于 MATLAB和C语言 对皮尔逊相关系数分别进行了 代码实现 。 在统计学中, 皮尔逊相关系数( Pearson correlation coefficient) ,又称皮尔逊积

    2024年02月06日
    浏览(41)
  • 相关分析——皮尔逊相关系数、t显著性检验及Python实现

    (1)衡量事物之间或称变量之间线性相关程度的强弱,并用适当的统计指标表示出来的过程。 (2)比如家庭收入和支出、一个人所受教育程度与其收入、子女身高和父母身高的相关性。 (1)衡量变量之间相关程度的一个量值。 (2)相关系数r的数值范围是在-1到+1之间。 (

    2024年02月03日
    浏览(50)
  • 概率论:方差、标准差、协方差、皮尔逊相关系数、线性相关

    一个随机变量,的值的变化程度可以用方差计算:  ;其中 是期望。 另外一种等价表达式:      其中为均值,N为总体例数 我们举个例子: 服从均一分布,取值为0.1,0.2,0.3,0.4,0.5 ,每种值的概率是20%,可算出期望是0.3,那么方差就是: 标准差是方差的平方根,随机

    2024年02月09日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包