LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline

这篇具有很好参考价值的文章主要介绍了LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline,RAG,笔记,llama

       近年来,大型语言模型(LLM)取得了显著的进步,然而大模型缺点之一是幻觉问题,即“一本正经的胡说八道”。其中RAG(Retrieval Augmented Generation,检索增强生成)是解决幻觉比较有效的方法。本文,我们将深入研究使用transformer库Llama-2模型PgVector数据库LlamaIndex库来构建RAG Pipeline完整过程。

一、什么是RAG(检索增强生成)?

       检索增强生成(RAG)模型是传统语言模型与信息检索组件的融合。从本质上讲,RAG利用外部数据(通常来自大型语料库或数据库)来增强大语言模型生成过程,以产生更知情和上下文相关的响应。

二、RAG的工作原理

检索阶段:当查询输入到RAG系统时,首先从数据库中检索相关信息。

增强阶段:然后将检索到的数据输入到一个语言模型中,比如案例中的Llama-2,它会生成一个响应。这种响应不仅基于模型预先训练的知识,还基于在第一阶段检索到的特定信息。

三、Llama-2:大语言模型

LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline,RAG,笔记,llama

       关于Llama-2模型的介绍,可以参考我之前的文章Meta发布升级大模型LLaMA 2:开源可商用

主要功能

多功能性:Llama-2可以处理各种NLP任务。

上下文理解:它擅长于掌握对话或文本的上下文。

语言生成:Llama-2可以生成连贯且符合上下文的反应。

为什么Llama-2用于RAG?:Llama-2在性能和计算效率方面的平衡使其成为RAG管道的理想候选者,尤其是在处理和生成基于大量检索数据的响应时。

四、PgVector:高效管理矢量数据

LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline,RAG,笔记,llama

       PgVector是PostgreSQL的扩展,PostgreSQL是一个流行的开源关系数据库。它是为处理高维矢量数据而定制的,就像Llama-2等语言模型生成的数据一样。PgVector允许对矢量数据进行高效存储、索引和搜索,使其成为涉及大型数据集和复杂查询的项目的重要工具。

主要功能

效率:为快速检索高维数据而优化。

集成:与PostgreSQL数据库无缝集成。

可扩展性:适用于处理大规模矢量数据集。

RAG中的重要性:对于RAG,PgVector提供了一个优化的数据库环境来存储和检索矢量化形式的数据,这对检索阶段至关重要。

五、LlamaIndex:连接语言和数据库

LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline,RAG,笔记,llama

       LlamaIndex可以使用Llama-2将文本数据转换为向量,然后将这些向量存储在由PgVector授权的PostgreSQL数据库中。这种转换对于实现基于语义相似性而不仅仅是关键字匹配的高效文本检索至关重要。

主要功能

语义索引:将文本转换为表示语义的向量。

数据库集成:存储和检索PostgreSQL中的矢量数据。

增强检索:方便高效、上下文感知的搜索功能。

RAG中的角色:LlamaIndex对于有效搜索存储在PgVector数据库中的嵌入至关重要,它便于根据查询输入快速检索相关数据。

六、代码实现

       在项目开发之前,确保正确设置环境以及安装好必要的库:

6.1 安装transformers库

       Hugging Face的transformer库是使用Llama-2等模型的基石,它为自然语言处理任务提供了对预先训练的模型和实用程序的轻松访问。

pip install transformers

       此命令安装transformer库的最新版本,其中包括加载和使用Llama-2模型所需的功能。

6.2 安装PgVector

       PgVector是PostgreSQL的扩展,有助于有效处理矢量数据。这对于管理LLM中使用的嵌入和实现快速检索操作尤为重要。

下载PostgreSQL

        访问PostgreSQL官方网站(https://www.postgresql.org/download/)并为您的操作系统选择适当的版本。PostgreSQL兼容各种平台,包括Windows、macOS和Linux。

      首先,确保PostgreSQL已安装并在您的系统上运行。然后,安装PgVector扩展:

pip install pgvector

       安装后,您需要创建一个PostgreSQL数据库,并在其中启用PgVector扩展:

CREATE DATABASE ragdb;\c ragdbCREATE EXTENSION pgvector;

      此SQL命令序列创建一个名为ragdb的新数据库,并激活其中的PgVector扩展。

6.3 安装LlamaIndex库

       LlamaIndex是专门为索引和检索矢量数据而设计的,使其成为RAG管道的重要组成部分。

pip install llama-index

       此命令安装LlamaIndex库,使您能够为矢量数据创建和管理索引。

RAG Pipeline如下图所示:

LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline,RAG,笔记,llama

       构建LLM RAG管道包括几个步骤:初始化Llama-2进行语言处理,使用PgVector建立PostgreSQL数据库进行矢量数据管理,以及创建集成LlamaIndex的函数以将文本转换和存储为矢量。

6.4 初始化Llama-2

      构建RAG管道的第一步包括使用Transformers库初始化Llama-2模型。这个过程包括建立模型及其标记器,这对编码和解码文本至关重要。

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM# Load the tokenizer and modeltokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")model = AutoModelForSeq2SeqLM.from_pretrained("meta-llama/Llama-2-7b-hf")

       在这个片段中,我们从llama-2包中导入LlamaModel,并使用特定的模型变体(例如“llama2-large”)对其进行初始化,该模型将用于文本生成和矢量化。

6.5 设置PgVector

       一旦模型准备就绪,下一步就是建立PgVector数据库,用于存储和检索矢量化数据。

PostgreSQL数据库设置:

安装PostgreSQL:确保PostgreSQL已安装并正在运行。

创建数据库并启用PgVector:

CREATE DATABASE ragdb;\c ragdbCREATE EXTENSION pgvector;

用于数据库交互的Python代码:

import psycopg2# Connect to the PostgreSQL databaseconn = psycopg2.connect(dbname="ragdb", user="yourusername", password="yourpassword")# Create a table for storing embeddingscursor = conn.cursor()cursor.execute("CREATE TABLE embeddings (id serial PRIMARY KEY, vector vector(512));")conn.commit()

       这段代码创建了一个到PostgreSQL数据库的连接,并设置了一个用于存储嵌入的表。矢量(512)数据类型是一个例子;可以根据模型的输出调整大小。

6.6 数据准备

       对于这个例子,让我们使用一个与可再生能源相关的科学摘要的简单数据集。数据集由摘要列表组成,每个摘要都是一个字符串。

data = [    "Advances in solar panel efficiency have led to a significant reduction in cost.",    "Wind turbines have become a major source of renewable energy in the past decade.",    "The development of safer nuclear reactors opens new possibilities for clean energy.",    # Add more abstracts as needed]

6.7 生成嵌入

       要从这些数据生成嵌入,我们首先需要加载Llama-2模型,并通过它处理每个抽象。

安装要求:

pip install torch

安装完torch后,执行以下代码。

from transformers import AutoTokenizer, AutoModelimport torch# Initialize the model and tokenizertokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")model = AutoModel.from_pretrained("meta-llama/Llama-2-7b-hf")def generate_embeddings(text):    inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=512)    with torch.no_grad():        outputs = model(**inputs)    return outputs.last_hidden_state.mean(dim=1).numpy()# Generate embeddings for each abstractembeddings = [generate_embeddings(abstract) for abstract in data]

       此函数通过Llama-2模型处理每个抽象,以生成嵌入,然后将嵌入存储在列表中。

6.8 使用LlamaIndex索引数据

      嵌入准备好后,我们现在可以使用LlamaIndex对它们进行索引。这一步骤对于以后实现高效检索至关重要。

import numpy as npfrom llama_index import VectorStoreIndex# Convert the list of embeddings to a NumPy arrayembeddings_array = np.vstack(embeddings)# Create an index for these embeddingsindex = VectorStoreIndex.from_documents(    documents, service_context=embeddings_array)

       此代码块将嵌入列表转换为NumPy数组,然后使用LlamaIndex创建一个名为“energy_abstracts_index”的索引。

6.9 与PostgreSQL集成

       最后,为了将其与PostgreSQL数据库集成(假设您已经如前所述使用PgVector进行了设置),您可以将这些嵌入存储在数据库中。

安装要求:

pip install psycopg2

          安装“psycopg2”后,实现以下代码以将嵌入存储在数据库中。

import psycopg2# Connect to your PostgreSQL databaseconn = psycopg2.connect(dbname="ragdb", user="yourusername", password="yourpassword")cursor = conn.cursor()# Store each embedding in the databasefor i, embedding in enumerate(embeddings_array):    cursor.execute("INSERT INTO embeddings (id, vector) VALUES (%s, %s)", (i, embedding))conn.commit()

      在这个片段中,我们有一个示例文本的列表。我们循环遍历每个文本,index_document函数将文本转换为向量并将其存储在数据库中。

6.10 集成RAG管道

      设置好各个组件后,将它们集成到检索增强生成(RAG)管道中是最后一步。这包括创建一个系统来处理查询,从数据库中检索相关信息,使用Llama-2模型生成响应。

创建RAG查询函数

       RAG Pipeline的核心是一个函数,它接受用户查询,从数据库中检索相关上下文,并基于查询和检索到的上下文生成响应。

def your_retrieval_condition(query_embedding, threshold=0.7):      # Convert query embedding to a string format for SQL query    query_embedding_str = ','.join(map(str, query_embedding.tolist()))    # SQL condition for cosine similarity    condition = f"cosine_similarity(vector, ARRAY[{query_embedding_str}]) > {threshold}"    return condition

       现在,让我们将这个自定义检索逻辑集成到我们的RAG管道中:

def rag_query(query):    # Tokenize and encode the query    input_ids = tokenizer.encode(query, return_tensors='pt')    # Generate query embedding    query_embedding = generate_embeddings(query)    # Retrieve relevant embeddings from the database    retrieval_condition = your_retrieval_condition(query_embedding)    cursor.execute(f"SELECT vector FROM embeddings WHERE {retrieval_condition}")    retrieved_embeddings = cursor.fetchall()     # Convert the retrieved embeddings into a tensor    retrieved_embeddings_tensor = torch.tensor([emb[0] for emb in retrieved_embeddings])    # Combine the retrieved embeddings with the input_ids for the model    # (This step may vary based on your model's requirements)    combined_input = torch.cat((input_ids, retrieved_embeddings_tensor), dim=0)    # Generate the response    generated_response = model.generate(combined_input, max_length=512)    return tokenizer.decode(generated_response[0], skip_special_tokens=True)

      让我们看看我们的RAG管道将如何与示例查询一起工作:

query = "What are the latest advancements in renewable energy?"response = rag_query(query)print("Response:", response)

       在这种情况下,管道检索与“可再生能源”进步相关的上下文,将其与查询相结合,并生成全面的响应。

七、结论

       利用Llama-2、PgVector和LlamaIndex构建LLM-RAG管道,为NLP领域开辟了一个可能性领域。这个管道不仅可以理解和生成文本,而且还利用庞大的信息数据库来增强其响应,使其在聊天机器人、推荐系统等各种应用程序中具有难以置信的强大功能。

       然而,旅程并没有就此结束。NLP的世界正在迅速发展,保持最新趋势和技术的更新至关重要。这里讨论的实现是进入更广泛、更复杂的语言理解和生成世界的垫脚石。不断试验,不断学习,最重要的是不断创新。

参考文献:

[1] https://medium.com/@shaikhrayyan123/how-to-build-an-llm-rag-pipeline-with-llama-2-pgvector-and-llamaindex-4494b54eb17d文章来源地址https://www.toymoban.com/news/detail-812323.html

到了这里,关于LLM之RAG实战(十六)| 使用Llama-2、PgVector和LlamaIndex构建LLM Rag Pipeline的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • LLM微调(四)| 微调Llama 2实现Text-to-SQL,并使用LlamaIndex在数据库上进行推理

            Llama 2是开源LLM发展的一个巨大里程碑。最大模型及其经过微调的变体位居Hugging Face Open LLM排行榜(https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)前列。多个基准测试表明,就性能而言,它正在接近GPT-3.5(在某些情况下甚至超过它)。所有这些都意味着,对于从

    2024年02月03日
    浏览(54)
  • 使用Llama index构建多代理 RAG

    检索增强生成(RAG)已成为增强大型语言模型(LLM)能力的一种强大技术。通过从知识来源中检索相关信息并将其纳入提示,RAG为LLM提供了有用的上下文,以产生基于事实的输出。 但是现有的单代理RAG系统面临着检索效率低下、高延迟和次优提示的挑战。这些问题在限制了真实世

    2024年02月07日
    浏览(43)
  • 使用CLIP和LLM构建多模态RAG系统

    在本文中我们将探讨使用开源大型语言多模态模型(Large Language Multi-Modal)构建检索增强生成(RAG)系统。本文的重点是在不依赖LangChain或LLlama index的情况下实现这一目标,这样可以避免更多的框架依赖。 在人工智能领域,检索增强生成(retrieve - augmented Generation, RAG)作为一种变革性

    2024年02月02日
    浏览(45)
  • LLM本地知识库问答系统(一):使用LangChain和LlamaIndex从零构建PDF聊天机器人指南

           随着大型语言模型(LLM)(如ChatGPT和GPT-4)的兴起,现在比以往任何时候都更容易构建比普通熊更智能的智能聊天机器人,并且可以浏览堆积如山的文档,为您的输入提供准确的响应。        在本系列中,我们将探索如何使用pre-trained的LLM创建一个聊天机器人,该聊

    2024年02月11日
    浏览(60)
  • RAG实战 7 - 使用llama_index实现多模态RAG

    转载自:LLM之RAG实战(七)| 使用llama_index实现多模态RAG https://mp.weixin.qq.com/s/FVF09cEO5nUipcL9R8ydXQ OpenAI开发日上最令人兴奋的发布之一是GPT-4V API(https://platform.openai.com/docs/guides/vision)的发布。GPT-4V是一个多模态模型,可以接收文本/图像,并可以输出文本响应。最近还有一些其他

    2024年01月17日
    浏览(35)
  • Elasticsearch:使用在本地计算机上运行的 LLM 以及 Ollama 和 Langchain 构建 RAG 应用程序

    无需 GPU 的隐私保护 LLM。在本博客中,我将演示使用不同的工具 Ollama 构建的 RAG 应用程序。 与本文相关的所有源代码均已发布在 github上。 请克隆存储库以跟随文章操作。我们可以通过如下的方式来克隆: Ollama 是一个轻量级且灵活的框架,专为在个人计算机上本地部署 LL

    2024年04月16日
    浏览(53)
  • LLM之RAG实战(一):使用Mistral-7b, LangChain, ChromaDB搭建自己的WEB聊天界面

          如何使用没有被LLM训练过的数据来提高LLM性能?检索增强生成(RAG)是未来的发展方向,下面将解释一下它的含义和实际工作原理。 ​       假设您有自己的数据集,例如来自公司的文本文档。如何让ChatGPT和其他LLM了解它并回答问题?         这可以通过四个步骤

    2024年01月18日
    浏览(48)
  • LLM之RAG实战(二十七)| 如何评估RAG系统

           有没有想过今天的一些应用程序是如何看起来几乎神奇地智能的?这种魔力很大一部分来自于一种叫做RAG和LLM的东西。把RAG(Retrieval Augmented Generation)想象成人工智能世界里聪明的书呆子,它会挖掘大量信息,准确地找到你的问题所需要的信息。然后,还有LLM(大型

    2024年02月22日
    浏览(32)
  • LLM大模型推理加速实战:vllm、fastllm与llama.cpp使用指南

    随着人工智能技术的飞速发展,大型语言模型(LLM)在诸如自然语言处理、智能问答、文本生成等领域的应用越来越广泛。然而,LLM模型往往具有庞大的参数规模,导致推理过程计算量大、耗时长,成为了制约其实际应用的关键因素。为了解决这个问题,一系列大模型推理加

    2024年04月13日
    浏览(38)
  • LLM本地知识库问答系统(二):如何正确使用LlamaIndex索引

    LLM本地知识库问答系统(一):使用LangChain和LlamaIndex从零构建PDF聊天机器人指南        上一篇文章我们介绍了使用LlamaIndex构建PDF聊天机器人,本文将介绍一下LlamaIndex的基本概念和原理。        LlamaIndex(也称为GPT Index)是一个用户友好的界面,可将外部数据连接到大型语

    2024年02月10日
    浏览(44)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包