MongoDB聚合:$bucketAuto

这篇具有很好参考价值的文章主要介绍了MongoDB聚合:$bucketAuto。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

按照指定的表达式对输入文档进行分类后放入指定数字的桶中,跟$bucket不太一样,$bucketAuto可以指定分组的数量(颗粒度),$bucketAuto会根据groupBy的值和颗粒度自动生成桶的边界。

语法

{
  $bucketAuto: {
      groupBy: <表达式>,
      buckets: <数字>,
      output: {
         <输出1>: { <$accumulator 表达式> },
         ...
      }
      granularity: <字符串>
  }
}

groupBy

表达式,对文档进行分组的表达式。若指定字段路径,需要在字段名前加上美元符号$并用引号引起来,如:$field_name

buckets

整数,32位的正整数,指定桶的数量也就是输入文档分组的数量。

output

文档,可选,指定了输出文档中除_id字段外要包含的其他字段,必须要使用汇总(累加器)表达式:

<输出字段1>: { <accumulator>: <表达式1> },
...

如果指定了输出字段,则count字段不会自动添加,需要的话要手动添加。如果不指定输出字段则默认添加一个count字段。

output: {
  <输出字段1>: { <accumulator>: <expres表达式1sion1> },
  ...
  count: { $sum: 1 }
}

每个桶文档包含:

  • 一个桶边界下限的_id
    • _id.min字段指定了桶边界的下限(含)。
    • _id.max字段指定了桶边界的上限(不含)。除系列中的最后一个桶外,该界限对所有桶都是排他性的,因为在最后一个桶中,该界限是包含的。
  • count字段,包含文件桶中的文件数量。如果未指定输出文档,则默认包含count字段。

granularity

可选,字符串,指定了一个字符串,用于指定首选数列,以确保计算的边界边缘以首选的整数或其10的幂次结束。只有当所有groupBy值都是数值且都不是NaN时才有效。

支持的颗粒度:“R5”,“R10”,“R20”,“R40”,“R80”,“1-2-5”,“E6”,“E12”,“E24”,“E48”,“E96”,“E192”,“POWERSOF2”。

说明

如果出现以下情况,桶数量可能少于指定数量:

  • 输入文件的数量少于指定的文件桶数量。
  • groupBy表达式的唯一值数量少于指定的存储桶数量。
  • 粒度的间隔数少于桶数。
  • 粒度不够精细,无法将文档均匀分布到指定数量的桶中。

groupBy字段的粒度或唯一值的数量决定了文档是否能均匀分布到不同的桶。如果粒度不够,$bucketAuto阶段可能无法将结果均匀地分配到各个桶。

粒度

$bucketAuto接受一个可选的粒度参数,确保所有数据桶的边界都遵循指定的首选数列。使用首选数列可以更好地控制分组表达式中数值范围内的数据桶边界。当groupBy表达式的范围以指数形式扩展时,还可以使用首选数列帮助对数和均匀地设置数据桶边界。

雷纳数列

雷纳数列是通过取105次方根、10次方根、20次方根、40次方根或80次方根,然后将相当于1.0到 10.0(R80 为 10.3)之间数值的根的各种幂包含在内而得出的一组数字。

将粒度设置为 R5、R10、R20、R40 或 R80,可将数据桶边界限制为系列中的值。当 groupBy 值超出 1.0 至 10.0(R80 为 10.3)范围时,系列值将乘以 10 的幂。

R5 数列以 10 的五次方根 1.58 为基础,包括该根的各种幂次(四舍五入),直至 10。R5 数列的推导过程如下:

例如:

  • 10 0/5 = 1
  • 10 1/5 = 1.584 ~ 1.6
  • 10 2/5 = 2.511 ~ 2.5
  • 10 3/5 = 3.981 ~ 4.0
  • 10 4/5 = 6.309 ~ 6.3
  • 10 5/5 = 10

同样的方法也适用于其他雷纳系列,以提供更精细的粒度,即 1.0 和 10.0 之间的更多间隔(R80 为 10.3)。

E 序列

E 数字系列与雷纳数列类似,它们以特定的相对误差将 1.0 到 10.0 的区间细分为10的6、12、24、48、96或192的次方根。

将粒度设置为 E6、E12、E24、E48、E96 或 E192,可将桶边界限制为序列中的值。当 groupBy 值超出 1.0 到 10.0 的范围时,系列值将乘以 10 的幂。

1-2-5 序列

1-2-5 数列类似于三值数列雷纳数列。

将粒度设为 1-2-5,可将桶边界限制为 10 的三次根的各种幂,四舍五入到一位有效数字。

例如,以下数值属于 1-2-5 系列:0.1、0.2、0.5、1、2、5、10、20、50、100、200、500、1000 等…

2的次幂序列

将粒度设置为 POWERSOF2,限制桶边界为2的次幂

以下数字遵循2的幂序列:

  • 2^0 = 1
  • 2^1 = 2
  • 2^2 = 4
  • 2^3 = 8
  • 2^4 = 16
  • 2^5 = 32

一种常见的实现方式是,各种计算机组件(如内存)通常都遵守POWERSOF2的首选数字集:1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, …

不同粒度的比较

下面的操作演示了指定不同的粒度值如何影响$bucketAuto确定桶边界的方式。集合的_id从 0 到 99:

{ _id: 0 }
{ _id: 1 }
...
{ _id: 99 }

不同的粒度值会被代入到下面的操作中:

db.things.aggregate( [
  {
    $bucketAuto: {
      groupBy: "$_id",
      buckets: 5,
      granularity: <granularity>
    }
  }
] )

下表中的结果显示了不同的粒度值如何产生不同的桶边界:

粒度 结果 说明
无粒度 { “_id” : { “min” : 0, “max” : 20 }, “count” : 20 }{ “_id” : { “min” : 20, “max” : 40 }, “count” : 20 }{ “_id” : { “min” : 40, “max” : 60 }, “count” : 20 }{ “_id” : { “min” : 60, “max” : 80 }, “count” : 20 }{ “_id” : { “min” : 80, “max” : 99 }, “count” : 20 }
R20 { “_id” : { “min” : 0, “max” : 20 }, “count” : 20 }{ “_id” : { “min” : 20, “max” : 40 }, “count” : 20 }{ “_id” : { “min” : 40, “max” : 63 }, “count” : 23 }{ “_id” : { “min” : 63, “max” : 90 }, “count” : 27 }{ “_id” : { “min” : 90, “max” : 100 }, “count” : 10 }
E24 { “_id” : { “min” : 0, “max” : 20 }, “count” : 20 }{ “_id” : { “min” : 20, “max” : 43 }, “count” : 23 }{ “_id” : { “min” : 43, “max” : 68 }, “count” : 25 }{ “_id” : { “min” : 68, “max” : 91 }, “count” : 23 }{ “_id” : { “min” : 91, “max” : 100 }, “count” : 9 }
1-2-5 { “_id” : { “min” : 0, “max” : 20 }, “count” : 20 }{ “_id” : { “min” : 20, “max” : 50 }, “count” : 30 }{ “_id” : { “min” : 50, “max” : 100 }, “count” : 50 } 指定的桶数超过系列中的间隔数。
POWERSOF2 { “_id” : { “min” : 0, “max” : 32 }, “count” : 32 }{ “_id” : { “min” : 32, “max” : 64 }, “count” : 32 }{ “_id” : { “min” : 64, “max” : 128 }, “count” : 36 } 指定的桶数超过系列中的间隔数。

举例

下面的文档是收藏艺术品的集合:

{ "_id" : 1, "title" : "The Pillars of Society", "artist" : "Grosz", "year" : 1926,
    "price" : NumberDecimal("199.99"),
    "dimensions" : { "height" : 39, "width" : 21, "units" : "in" } }
{ "_id" : 2, "title" : "Melancholy III", "artist" : "Munch", "year" : 1902,
    "price" : NumberDecimal("280.00"),
    "dimensions" : { "height" : 49, "width" : 32, "units" : "in" } }
{ "_id" : 3, "title" : "Dancer", "artist" : "Miro", "year" : 1925,
    "price" : NumberDecimal("76.04"),
    "dimensions" : { "height" : 25, "width" : 20, "units" : "in" } }
{ "_id" : 4, "title" : "The Great Wave off Kanagawa", "artist" : "Hokusai",
    "price" : NumberDecimal("167.30"),
    "dimensions" : { "height" : 24, "width" : 36, "units" : "in" } }
{ "_id" : 5, "title" : "The Persistence of Memory", "artist" : "Dali", "year" : 1931,
    "price" : NumberDecimal("483.00"),
    "dimensions" : { "height" : 20, "width" : 24, "units" : "in" } }
{ "_id" : 6, "title" : "Composition VII", "artist" : "Kandinsky", "year" : 1913,
    "price" : NumberDecimal("385.00"),
    "dimensions" : { "height" : 30, "width" : 46, "units" : "in" } }
{ "_id" : 7, "title" : "The Scream", "artist" : "Munch",
    "price" : NumberDecimal("159.00"),
    "dimensions" : { "height" : 24, "width" : 18, "units" : "in" } }
{ "_id" : 8, "title" : "Blue Flower", "artist" : "O'Keefe", "year" : 1918,
    "price" : NumberDecimal("118.42"),
    "dimensions" : { "height" : 24, "width" : 20, "units" : "in" } }

单面聚合

在下面的操作中,输入文档将根据price字段中的值分成四组:

db.artwork.aggregate( [
   {
     $bucketAuto: {
         groupBy: "$price",
         buckets: 4
     }
   }
] )

该操作会返回以下文件:

{
  "_id" : {
    "min" : NumberDecimal("76.04"),
    "max" : NumberDecimal("159.00")
  },
  "count" : 2
}
{
  "_id" : {
    "min" : NumberDecimal("159.00"),
    "max" : NumberDecimal("199.99")
  },
  "count" : 2
}
{
  "_id" : {
    "min" : NumberDecimal("199.99"),
    "max" : NumberDecimal("385.00")
  },
  "count" : 2
}
{
  "_id" : {
    "min" : NumberDecimal("385.00"),
    "max" : NumberDecimal("483.00")
  },
  "count" : 2
}

多面聚合

…。

可在$facet阶段内使用$bucketAuto,对输入文档artwork进行多个聚合管道处理。

下面的聚合管道根据priceyearareaartwork 中的文档分组:

db.artwork.aggregate( [
  {
    $facet: {
      "price": [
        {
          $bucketAuto: {
            groupBy: "$price",
            buckets: 4
          }
        }
      ],
      "year": [
        {
          $bucketAuto: {
            groupBy: "$year",
            buckets: 3,
            output: {
              "count": { $sum: 1 },
              "years": { $push: "$year" }
            }
          }
        }
      ],
      "area": [
        {
          $bucketAuto: {
            groupBy: {
              $multiply: [ "$dimensions.height", "$dimensions.width" ]
            },
            buckets: 4,
            output: {
              "count": { $sum: 1 },
              "titles": { $push: "$title" }
            }
          }
        }
      ]
    }
  }
] )

操作返回以下内容:文章来源地址https://www.toymoban.com/news/detail-812329.html

{
  "area" : [
    {
      "_id" : { "min" : 432, "max" : 500 },
      "count" : 3,
      "titles" : [
        "The Scream",
        "The Persistence of Memory",
        "Blue Flower"
      ]
    },
    {
      "_id" : { "min" : 500, "max" : 864 },
      "count" : 2,
      "titles" : [
        "Dancer",
        "The Pillars of Society"
      ]
    },
    {
      "_id" : { "min" : 864, "max" : 1568 },
      "count" : 2,
      "titles" : [
        "The Great Wave off Kanagawa",
        "Composition VII"
      ]
    },
    {
      "_id" : { "min" : 1568, "max" : 1568 },
      "count" : 1,
      "titles" : [
        "Melancholy III"
      ]
    }
  ],
  "price" : [
    {
      "_id" : { "min" : NumberDecimal("76.04"), "max" : NumberDecimal("159.00") },
      "count" : 2
    },
    {
      "_id" : { "min" : NumberDecimal("159.00"), "max" : NumberDecimal("199.99") },
      "count" : 2
    },
    {
      "_id" : { "min" : NumberDecimal("199.99"), "max" : NumberDecimal("385.00") },
      "count" : 2 },
    {
      "_id" : { "min" : NumberDecimal("385.00"), "max" : NumberDecimal("483.00") },
      "count" : 2
    }
  ],
  "year" : [
    { "_id" : { "min" : null, "max" : 1913 }, "count" : 3, "years" : [ 1902 ] },
    { "_id" : { "min" : 1913, "max" : 1926 }, "count" : 3, "years" : [ 1913, 1918, 1925 ] },
    { "_id" : { "min" : 1926, "max" : 1931 }, "count" : 2, "years" : [ 1926, 1931 ] }
  ]
}

到了这里,关于MongoDB聚合:$bucketAuto的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【MongoDB】--MongoDB聚合Aggregation

    聚合操作组值来自多个文档,可以对分组数据执行各种操作以返回单个结果。聚合操作包含三类: 单一作用聚合、聚合管道、MapReduce 。 单一作用聚合 :提供对常见聚合过程的简单访问,操作都从单个集合聚合文档 聚合管道操作 :将文档在一个管道处理完毕后,把处理的结

    2024年02月14日
    浏览(40)
  • MongoDB——MongoDB删除系统自带的local数据库

    1.1、linux环境进入mongo客户端 输入 mongo 命令,进入命令行客户端 进入admin库,并登录,查看所有数据库 提升用户权限,然后进入local库并删除local库 然后重新进入admin库,把提升的用户权限降回,再次查看所有数据库 由上图可知,local库已被删除。

    2024年02月06日
    浏览(54)
  • [虚幻引擎 MongoDB Client 插件说明] DTMongoDB MongoDB数据库连接插件,UE蓝图可以操作MongoDB数据库增删改查。

    本插件可以在UE里面使用蓝图操作MongoDB数据库, 对数据库进行查询,删除,插入,替换,更新操作。 插件下载地址在文章最后。 Create MongoDB Client - 创建客户端对象 创建一个 MongoDB 客户端对象。 Connect By Url - 连接到数据库 Url :MongoDB的连接地址。 如 mongoDB://account:password@ip:

    2024年02月14日
    浏览(91)
  • MongoDB数据库从入门到精通系列文章之:MongoDB数据库百篇技术文章汇总

    MongoDB数据库系列文章持续更新中: 更多数据库内容请阅读博主数据库专栏,数据库专栏涵盖了Mysql、SQLServer、PostgreSQL、MongoDB、Oracle、Cassandra等数据库 数据库专栏 文章名称 文章链接 数据库安装部署系列之:部署Mongodb5.0.6高可用集群详细步骤 数据库安装部署系列之:部署M

    2024年02月11日
    浏览(54)
  • Mongodb连接数据库

    npm init   npm i mongoose  const mongoose=require(\\\"mongoose\\\") mongoose.connect(\\\"mongodb://127.0.0.1:27017/user\\\") 说明:mongodb是协议,user是数据库,如果没有会自动创建user数据库 。 node 文件名     mongoose.disconnect()

    2024年02月15日
    浏览(59)
  • mongodb数据库操作

    1、启动mongodb 在mongodb启动命令中 --dbpath 指定mongodb的数据存储路径 --logpath 指定mongodb的日志存储路径 2、停止mongodb 第一步先进入mongo命令行模式 第二步,使用use admin 命令进入admin数据库 第三步,执行 db.shutdownServer()命令 停止服务。代码及显示如下:  2 、导出Mongodb数据 mon

    2024年02月09日
    浏览(50)
  • MongoDb数据库

    1.显示所有数据库: show dbs 2.切换到指定数据库,如果没有则自动创建数据库 use databaseName 3.显示当前所在数据库 db 4.删除当前数据库 use 库名 db.dropDatabase() 1.创建集合 db.createCollection(\\\'集合名称\\\') 2.显示当前数据库中所有集合 show colletions  3.删除某个集合 db.xxx.drop(); 4.重命名集

    2024年02月04日
    浏览(54)
  • MongoDB数据库安装

    MongoDB数据的特点: 面相文档存储的分布式数据库 具有很强的扩展性 支持丰富的查询表达式,很接近于关系性数据库 使用类似于json的结构保存数据,可以轻易的查询到文档中内嵌的对象及数组 首先去官网下载安装包 Download MongoDB Community Server | MongoDB 启动MongoDB数据的服务 可

    2024年02月11日
    浏览(57)
  • MongoDB 数据库详细介绍

    MongoDB(来自“Humongous”,意为巨大的)是一个开源、高性能、无模式(NoSQL)、文档导向的分布式数据库。它以其灵活性、可扩展性和强大的查询功能而闻名于世。MongoDB 使用 JSON 格式的文档来存储数据,适用于多种应用场景,包括 Web 应用、移动应用、日志存储、大数据等。

    2024年02月12日
    浏览(65)
  • MongoDB:数据库初步应用

    1.MongoDBCompass连接数据库 连接路径:mongodb://用户名:密码@localhost:27017/ 2.创建数据库(集合) MongoDB中数据库被称为集合.  MongoDBCompass连接后,点击红色框加号创建集合,点击蓝色框加号创建文档(数据表) 文档中的数据结构(相当于表中的列)设计不用管,添加数据的时候,自动创建列和数

    2024年02月12日
    浏览(47)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包