【图像拼接/视频拼接】论文精读:Dynamic Video Stitching via Shakiness Removing

这篇具有很好参考价值的文章主要介绍了【图像拼接/视频拼接】论文精读:Dynamic Video Stitching via Shakiness Removing。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

第一次来请先看这篇文章:【图像拼接(Image Stitching)】关于【图像拼接论文精读】专栏的相关说明,包含专栏使用说明、创新思路分享等(不定期更新)文章来源地址https://www.toymoban.com/news/detail-812487.html

图像拼接系列相关论文精读

  1. Seam Carving for Content-Aware Image Resizing
  2. As-Rigid-As-Possible Shape Manipulation
  3. Adaptive As-Natural-As-Possible Image Stitching
  4. Shape-Preserving Half-Projective Warps for Image Stitching
  5. Seam-Driven Image Stitching
  6. Parallax-tolerant Image Stitching

到了这里,关于【图像拼接/视频拼接】论文精读:Dynamic Video Stitching via Shakiness Removing的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 【图像拼接】源码精读:Single-Perspective Warps in Natural Image Stitching(SPW)

    第一次来请先看这篇文章:【图像拼接(Image Stitching)】关于【图像拼接论文源码精读】专栏的相关说明,包含专栏内文章结构说明、源码阅读顺序、培养代码能力、如何创新等(不定期更新) 【源码精读】As-Projective-As-Possible Image Stitching with Moving DLT(APAP)第一部分:全局

    2024年01月23日
    浏览(35)
  • Python-图像拼接神器-stitching

    采用这个包,图像拼接结果很好~ 代码只需要三四行 图片1 图片2 图片3 图像拼接的效果图: 比如:你想将这三张图片拼接在一起,但是在这里面有混入了一张无关的照片,他还是会拼接的很好; 什么意思呢 具体来说: 我把这四张图片放在一起进行拼接 图片1 图片2 图片3 图

    2024年02月10日
    浏览(40)
  • 计算机视觉算法中的图像拼接(Image Stitching)

    随着数字摄影技术的发展,人们可以轻松地拍摄多张相邻的图像,并希望将它们合成为一张更大、更全面的图像。这就是图像拼接(Image Stitching)技术的应用场景。图像拼接是计算机视觉领域的一个重要研究方向,它旨在将多张重叠的图像拼接成一张无缝连接的全景图。 图像

    2024年02月06日
    浏览(52)
  • Video-LLaMA 论文精读

    video-LLaMA 一种用于视频理解的指令调整视听语言模型         Video-LLaMA 一个使大型语言模型(LLM)能够理解视频中的视觉和听觉的内容的多模态框架。它从冻结的预训练的视觉和音频encoder以及冻结的LLM中引导跨模态训练。         与之前专注于静态图像的视觉LLM不同

    2024年02月10日
    浏览(42)
  • 【论文精读】GPT-NER: Named Entity Recognition via Large Language Models

    一篇2023年4月26日才挂上arxiv的文章,是我看到的第一篇用LLM解决NER任务的文章,在我看来,LLM才是NER问题的最优解,尤其是小样本场景,具有丰富先验知识的LLM,其涌现能力总能让我叹为观止。 LLM在NER上的表现低于基线,这是因为二者任务不同,前者是文本生成任务,后者是

    2024年02月02日
    浏览(118)
  • 【论文精读】CONTAINER: Few-Shot Named Entity Recognition via Contrastive Learning

    一篇来自ACL2022的文章,采用对比学习的方法提高模型的性能,在实现方法上和实验论证部分很值得借鉴,至于和大模型性能的对比,还需要进一步的调研~ 低资源场景NER不可或缺,但现有的方法仅从源域学习特定的语义特征和中间表示,这会影响对目标域的泛化能力,降低性

    2024年02月05日
    浏览(57)
  • 【论文阅读】Fast subgraph query processing and subgraph matching via static and dynamic equivalences

    子图查询处理(也称为子图搜索)和子图匹配是许多应用领域中的基本图问题。为解决这些问题制定实际的解决办法,人们已经作出了许多努力。尽管付出了这些努力,但现有的算法在处理大型图和/或许多图时显示出了有限的运行时间和可伸缩性。在本文中,我们提出了一个

    2024年02月03日
    浏览(42)
  • 【论文阅读】Speech Driven Video Editing via an Audio-Conditioned Diffusion Model

    DiffusionVideoEditing:基于音频条件扩散模型的语音驱动视频编辑 code:GitHub - DanBigioi/DiffusionVideoEditing: Official project repo for paper \\\"Speech Driven Video Editing via an Audio-Conditioned Diffusion Model\\\" paper:[2301.04474] Speech Driven Video Editing via an Audio-Conditioned Diffusion Model (arxiv.org) 目录 1 介绍 2 背景

    2024年01月17日
    浏览(50)
  • 论文精读:《BEVFormer v2: Adapting Modern Image Backbones to Bird’s-Eye-View Recognition via Perspective 》

    本文工作: 提出了一种具有透视监督(perspective supervision)的新型鸟瞰(BEV)检测器,该检测器收敛速度更快,更适合现代图像骨干。 现有的最先进的BEV检测器通常与VovNet等特定深度预训练的主干相连,阻碍了蓬勃发展的图像主干和BEV检测器之间的协同作用。 为了解决这一限制

    2024年02月04日
    浏览(48)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包