Pytorch各种Dropout层应用于详解

这篇具有很好参考价值的文章主要介绍了Pytorch各种Dropout层应用于详解。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

目录

torch框架Dropout functions详解

dropout

用途

用法

使用技巧

参数

数学理论公式

代码示例

alpha_dropout

用途

用法

使用技巧

参数

数学理论公式

代码示例 

feature_alpha_dropout

用途

用法

使用技巧

参数

数学理论

代码示例

dropout1d

用途

用法

使用技巧

参数

数学理论

代码示例

dropout2d

用途

用法

使用技巧

参数

数学理论

代码示例

dropout3d

用途

用法

使用技巧

参数

数学理论

代码示例

总结


torch框架Dropout functions详解

dropout

torch.nn.functional.dropout 是 PyTorch 深度学习框架中的一个功能模块,主要用于在训练神经网络时防止过拟合。这个函数通过随机地将输入张量中的某些元素置零来实现正则化效果。

用途

  1. 防止过拟合:在训练过程中,dropout 可以减少对特定神经元的依赖,从而增强模型的泛化能力。
  2. 模型正则化:作为一种正则化技术,可以提高模型对噪声的鲁棒性。

用法

基本用法如下:

output = torch.nn.functional.dropout(input, p=0.5, training=True, inplace=False)

其中:

  • input:输入数据
  • p:零化元素的概率
  • training:是否在训练模式下应用 dropout
  • inplace:是否原地执行此操作

使用技巧

  1. 选择合适的 p 值:p 值太大可能导致信息丢失,太小则可能效果不明显。
  2. 训练和测试阶段的差异:确保在训练阶段启用 dropout,在测试或评估阶段关闭。
  3. inplace 参数的使用:只在确保不影响后续计算的情况下使用 inplace 操作。

参数

  • p(float):元素被零化的概率,默认值为 0.5。
  • training(bool):如果为 True,则应用 dropout,默认为 True。
  • inplace(bool):如果设置为 True,则原地修改数据,默认为 False。

数学理论公式

公式:Y=X*M

其中:

  • Y:输出数据
  • X:输入数据
  • M:由伯努利分布生成的掩码,其中 M 中的元素独立且等概率地为 0 或 1/(1-p)​。

代码示例

import torch
import torch.nn.functional as F

# 输入数据
input = torch.randn(5)

# 应用 dropout
output = F.dropout(input, p=0.5, training=True)

print(output)  # 输出结果可能类似于 tensor([ 0.0000, -0.0000, -1.8468, 0.0000, -0.0000])

在这个例子中,我们首先定义了一个随机的输入张量 input。接着,我们应用 torch.nn.functional.dropout 函数,并设置 dropout 概率为 0.5。由于 training 参数设置为 True,函数将随机地将一些元素置零。输出结果会显示一些元素为零,而其他元素的值会增加以保持总体激活水平。 

alpha_dropout

torch.nn.functional.alpha_dropout 是 PyTorch 中的一个功能模块,专门用于应用 alpha dropout。Alpha dropout 是一种特殊的 dropout 方法,它不仅随机地将输入张量中的一些元素置零,而且还保持了输入数据的平均值和方差。这种方法特别适用于自归一化的神经网络,如基于 Scaled Exponential Linear Units (SELU) 的网络。

用途

  1. 维持自归一化属性:对于使用 SELU 激活函数的网络,alpha dropout 可以保持输入数据的平均值和方差,有助于维持网络的自归一化属性。
  2. 减少过拟合:和传统的 dropout 一样,alpha dropout 可以减少模型对训练数据的过度拟合。

用法

output = torch.nn.functional.alpha_dropout(input, p=0.5, training=False, inplace=False)

其中:

  • input:输入数据
  • p:元素被零化的概率
  • training:是否在训练模式下应用 alpha dropout
  • inplace:是否原地执行此操作

使用技巧

  1. 适用于 SELU 激活函数的网络:在使用 SELU 激活函数的网络中使用 alpha dropout 可以获得最佳效果。
  2. 训练与测试阶段的差异:确保在训练阶段启用 alpha dropout,在测试或评估阶段关闭。

参数

  • p(float):元素被零化的概率,默认值为 0.5。
  • training(bool):如果为 True,则应用 alpha dropout,默认为 False。
  • inplace(bool):如果设置为 True,则原地修改数据,默认为 False。

数学理论公式

 Pytorch各种Dropout层应用于详解,pytorch,python,深度学习,人工智能,深度学习,机器学习,pytorch,python

其中:

  • Y:输出数据
  • X:输入数据
  • M:一个掩码,其中元素独立且等概率地为 0 或 1。
  • α 和 α′:预定义的常数,用于保持输入的平均值和方差。

代码示例 

import torch
import torch.nn.functional as F

# 输入数据
input = torch.randn(5)

# 应用 alpha dropout
output = F.alpha_dropout(input, p=0.5, training=True)

print(output)  # 输出结果可能类似于 tensor([-1.7580,  0.0000,  0.0000, -0.6776,  1.3564])

在这个例子中,我们首先定义了一个随机的输入张量 input。接着,我们应用 torch.nn.functional.alpha_dropout 函数,并设置 dropout 概率为 0.5。由于 training 参数设置为 True,函数将根据 alpha dropout 的规则随机地将一些元素置零并调整其他元素的值。

feature_alpha_dropout

 

torch.nn.functional.feature_alpha_dropout 是 PyTorch 中的一个特殊的 dropout 函数,它专门用于随机屏蔽输入张量的整个通道。这种方法在深度学习中尤其适用于保持卷积网络中特征映射(feature maps)的结构完整性。与传统的 dropout 不同,它将激活值设置为 SELU(Scaled Exponential Linear Unit)激活函数的负饱和值,而不是简单地置零。

用途

  1. 维持特征映射的完整性:通过屏蔽整个特征映射,而不是单个激活值,帮助保持特征的结构。
  2. 适用于 SELU 激活的网络:特别适合于使用 SELU 激活函数的网络,因为它保持了激活值的负饱和状态。

用法

output = torch.nn.functional.feature_alpha_dropout(input, p=0.5, training=True, inplace=False)

其中:

  • input:输入张量
  • p:通道被零化的概率
  • training:是否在训练模式下应用 feature alpha dropout
  • inplace:是否原地执行此操作

使用技巧

  1. 适用于具有 SELU 激活的网络:这种 dropout 形式特别适合于使用 SELU 激活函数的网络。
  2. 注意训练和测试阶段的差异:确保在训练阶段启用 feature alpha dropout,在测试或评估阶段关闭。

参数

  • p(float):通道被零化的概率,默认为 0.5。
  • training(bool):如果为 True,则应用 feature alpha dropout,默认为 True。
  • inplace(bool):如果设置为 True,则原地修改数据,默认为 False。

数学理论

与传统 dropout 相比,feature alpha dropout 不仅仅是将激活值简单地置零。相反,它将被屏蔽的激活值设置为 SELU 激活函数的负饱和值,同时保持输入数据的均值和方差。这是通过对每个通道独立应用伯努利分布来实现的,每个通道被屏蔽的概率为 p。

代码示例

 

import torch
import torch.nn.functional as F

# 输入数据
input = torch.randn(1, 3, 4, 4)  # 假设是一个具有 3 个通道的特征映射

# 应用 feature alpha dropout
output = F.feature_alpha_dropout(input, p=0.5, training=True)

print(output)  # 输出结果会显示部分通道的激活值被设置为 SELU 的负饱和值

在这个例子中,我们首先定义了一个具有 3 个通道的随机输入张量 input,其形状为 (1, 3, 4, 4),表示有 1 个样本,3 个通道,每个通道是一个 4x4 的特征映射。然后,我们应用 torch.nn.functional.feature_alpha_dropout 函数,并设置 dropout 概率为 0.5。由于 training 参数设置为 True,函数将随机地选择一些通道并将它们的激活值设置为 SELU 激活函数的负饱和值,而保留其他通道不变。

这种处理方式有助于在训练使用 SELU 激活函数的卷积网络时,保持特征映射的完整性,并减少过拟合。它是一种更精细的正则化方法,特别适用于深度学习中的图像处理和其他需要保持空间结构的应用。

dropout1d

torch.nn.functional.dropout1d 是 PyTorch 中的一个函数,专门用于在一维数据上应用 dropout。它的主要作用是随机将输入张量的整个通道置零。这种方法在处理一维特征映射(例如,在卷积神经网络中处理时间序列数据或一维信号)时特别有用。

用途

  1. 防止一维数据过拟合:通过随机地屏蔽整个通道,dropout1d 减少了模型对单个通道的依赖,从而增强了模型的泛化能力。
  2. 适用于一维特征映射:特别适用于处理一维数据,如时间序列或一维信号。

用法

output = torch.nn.functional.dropout1d(input, p=0.5, training=True, inplace=False)

其中:

  • input:输入张量
  • p:通道被零化的概率
  • training:是否在训练模式下应用 dropout1d
  • inplace:是否原地执行此操作

使用技巧

  1. 选择合适的 p 值:p 值太大可能导致信息丢失,太小则可能效果不明显。
  2. 训练和测试阶段的差异:确保在训练阶段启用 dropout1d,在测试或评估阶段关闭。
  3. 一维数据结构:确保输入数据的结构符合一维特征映射的形式。

参数

  • p(float):通道被零化的概率,默认为 0.5。
  • training(bool):如果为 True,则应用 dropout1d,默认为 True。
  • inplace(bool):如果设置为 True,则原地修改数据,默认为 False。

数学理论

与传统的 dropout 相似,dropout1d 函数在每次前向传播时,都会根据伯努利分布以概率 p 随机选择一些通道并将它们置零。不同之处在于,dropout1d 是对整个一维通道进行操作,而不是单个元素。

代码示例

 

import torch
import torch.nn.functional as F

# 输入数据
input = torch.randn(1,3, 10) # 假设是一个具有 3 个通道的一维特征映射,每个通道有 10 个元素

output = F.dropout1d(input, p=0.5, training=True)

print(output) # 输出结果可能显示一些通道被完全置零

在这个例子中,我们首先定义了一个随机的一维输入张量 `input`,其形状为 `(1, 3, 10)`,表示有 1 个样本,3 个通道,每个通道有 10 个元素。然后,我们应用 `torch.nn.functional.dropout1d` 函数,并设置 dropout 概率为 0.5。由于 `training` 参数设置为 True,函数将在每次前向传播时随机地选择一些通道并将它们完全置零。这种处理方式有助于在训练一维数据时减少过拟合,尤其适用于处理如音频、时间序列或任何一维信号数据的场景。通过随机地屏蔽整个通道,它鼓励模型学习到更加鲁棒的特征表示。

dropout2d

torch.nn.functional.dropout2d 是 PyTorch 中的一个函数,专用于在二维数据上应用 dropout。这个函数的主要作用是在每次前向传播时,随机将输入张量的整个二维通道(即二维特征映射)置零。这在处理具有空间特征的数据,如图像数据,在卷积神经网络中尤为有用。

用途

  1. 防止二维数据过拟合:通过随机地屏蔽整个通道,dropout2d 减少了模型对单个通道的依赖,从而增强了模型的泛化能力。
  2. 适用于图像处理:特别适用于图像数据等二维特征映射的处理。

用法

output = torch.nn.functional.dropout2d(input, p=0.5, training=True, inplace=False)

其中:

  • input:输入张量
  • p:通道被零化的概率
  • training:是否在训练模式下应用 dropout2d
  • inplace:是否原地执行此操作

使用技巧

  1. 选择合适的 p 值:p 值太大可能导致信息丢失,太小则可能效果不明显。
  2. 训练和测试阶段的差异:确保在训练阶段启用 dropout2d,在测试或评估阶段关闭。
  3. 二维数据结构:确保输入数据的结构符合二维特征映射的形式。

参数

  • p(float):通道被零化的概率,默认为 0.5。
  • training(bool):如果为 True,则应用 dropout2d,默认为 True。
  • inplace(bool):如果设置为 True,则原地修改数据,默认为 False。

数学理论

dropout2d 函数在每次前向传播时,都会根据伯努利分布以概率 p 随机选择一些通道并将它们置零。不同之处在于,dropout2d 是对整个二维通道进行操作,而不是单个元素。

代码示例

import torch
import torch.nn.functional as F

# 输入数据
input = torch.randn(1, 3, 8, 8)  # 假设是一个具有 3 个通道的二维特征映射,每个通道是一个 8x8 的图像

# 应用 dropout2d
output = F.dropout2d(input, p=0.5, training=True)

print(output)  # 输出结果可能显示一些通道被完全置零

在这个例子中,我们首先定义了一个随机的二维输入张量 input,其形状为 (1, 3, 8, 8),表示有 1 个样本,3 个通道,每个通道是一个 8x8 的图像(或二维特征映射)。然后,我们应用了 torch.nn.functional.dropout2d 函数,并设置了 dropout 概率为 0.5。由于 training 参数设置为 True,函数将在每次前向传播时随机地选择一些通道并将它们完全置零。这种处理方式有助于在训练图像或其他二维数据时减少过拟合,尤其适用于卷积神经网络中的图像识别、图像分类等场景。通过随机地屏蔽整个通道,它鼓励模型学习到更加鲁棒的特征表示,从而提高模型在新数据上的泛化能力。

dropout3d

torch.nn.functional.dropout3d 是 PyTorch 中的一个函数,用于在三维数据上应用 dropout。这个函数的主要作用是在每次前向传播时,随机将输入张量的整个三维通道(即三维特征映射)置零。这在处理具有三维空间特征的数据,如三维图像或体积数据,在卷积神经网络中尤为有用。

用途

  1. 防止三维数据过拟合:通过随机地屏蔽整个通道,dropout3d 减少了模型对单个通道的依赖,从而增强了模型的泛化能力。
  2. 适用于三维特征映射:特别适用于处理三维数据,如体积医学图像或三维时间序列。

用法

output = torch.nn.functional.dropout3d(input, p=0.5, training=True, inplace=False)

其中:

  • input:输入张量
  • p:通道被零化的概率
  • training:是否在训练模式下应用 dropout3d
  • inplace:是否原地执行此操作

使用技巧

  1. 选择合适的 p 值:p 值太大可能导致信息丢失,太小则可能效果不明显。
  2. 训练和测试阶段的差异:确保在训练阶段启用 dropout3d,在测试或评估阶段关闭。
  3. 三维数据结构:确保输入数据的结构符合三维特征映射的形式。

参数

  • p(float):通道被零化的概率,默认为 0.5。
  • training(bool):如果为 True,则应用 dropout3d,默认为 True。
  • inplace(bool):如果设置为 True,则原地修改数据,默认为 False。

数学理论

dropout3d 函数在每次前向传播时,都会根据伯努利分布以概率 p 随机选择一些通道并将它们置零。不同之处在于,dropout3d 是对整个三维通道进行操作,而不是单个元素。

代码示例

import torch
import torch.nn.functional as F

# 输入数据
input = torch.randn(1, 3, 8, 8, 8)  # 假设是一个具有 3 个通道的三维特征映射,每个通道是一个 8x8x8 的体积数据

# 应用 dropout3d
output = F.dropout3d(input, p=0.5, training=True)

print(output)  # 输出结果可能显示一些通道被完全置零

在这个例子中,我们首先定义了一个随机的三维输入张量 input,其形状为 (1, 3, 8, 8, 8),表示有 1 个样本,3 个通道,每个通道是一个 8x8x8 的体积数据。然后,我们应用了 torch.nn.functional.dropout3d 函数,并设置了 dropout 概率为 0.5。由于 training 参数设置为 True,函数将在每次前向传播时随机地选择一些通道并将它们完全置零。这种处理方式有助于在训练涉及三维空间数据的模型时减少过拟合,尤其适用于处理体积医学图像、三维扫描数据或任何涉及三维结构的场景。通过随机地屏蔽整个通道,它鼓励模型学习到更加鲁棒的三维特征表示,从而提高模型在新数据上的泛化能力和性能。在实践中,这种方法可以显著提高三维数据处理任务的准确性和可靠性。

总结

本文解析了 PyTorch 框架中的几种关键的 dropout 函数,包括 dropoutalpha_dropoutfeature_alpha_dropoutdropout1ddropout2ddropout3d。每种方法都针对不同的数据维度和网络特点,提供了有效的过拟合防止和模型正则化策略。文章来源地址https://www.toymoban.com/news/detail-812546.html

到了这里,关于Pytorch各种Dropout层应用于详解的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 深度学习Pytorch常用api详解记录

    对象 :给定的序列化张量,即 Tensor 型。 功能 :实现两个张量在指定维度上的拼接。 输出 :拼接后的张量。 函数以及参数 : torch.cat( tensor , dim ) ,官方给出的有四个参数,但是我们平时只会用到前两个参数即可。 tensor :有相同形状的张量序列,所有的张量需要有相同的

    2024年02月09日
    浏览(44)
  • 深度学习必备书籍——《Python深度学习 基于Pytorch》

    作为一名机器学习|深度学习的博主,想和大家分享几本 深度学习 的书籍,让大家更快的入手深度学习,成为AI达人!今天给大家介绍的是: 《Python深度学习 基于Pytorch》 在人工智能时代,如何尽快掌握人工智能的核心—深度学习呢?相信这是每个欲进入此领域的人面临的主

    2023年04月09日
    浏览(90)
  • 《Python深度学习基于Pytorch》学习笔记

    有需要这本书的pdf资源的可以联系我~ 这本书不是偏向于非常详细的教你很多函数怎么用,更多的是交个基本使用,主要是后面的深度学习相关的内容。 1.Numpy提供两种基本的对象:ndarray(n维数组对象)(用于储存多维数据)和ufunc(通用函数对象,用于处理不同的数据)。

    2024年02月09日
    浏览(42)
  • PyTorch深度学习实战(1)——神经网络与模型训练过程详解

    人工神经网络 ( Artificial Neural Network , ANN ) 是一种监督学习算法,其灵感来自人类大脑的运作方式。类似于人脑中神经元连接和激活的方式,神经网络接受输入,通过某些函数在网络中进行传递,导致某些后续神经元被激活,从而产生输出。函数越复杂,网络对于输入的数据拟

    2024年02月06日
    浏览(52)
  • Pytorch学习笔记(8):正则化(L1、L2、Dropout)与归一化(BN、LN、IN、GN)

     一、正则化之weight_decay(L2正则) 1.1 正则化及相关概念 1.2 正则化策略(L1、L2) (1)L1正则化 (2)L2正则化 1.3 L2正则项——weight_decay 二、正则化之Dropout 2.1 Dropout概念 2.2 nn.Dropout  三、归一化之Batch Normalization(BN层) 3.1 Batch Normalization介绍 3.2 Pytorch的Batch Normalization 1d

    2024年02月04日
    浏览(43)
  • PyTorch深度学习遥感影像地物分类与目标检测、分割及遥感影像问题深度学习优化实践技术应用

    我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。随着小

    2024年02月10日
    浏览(63)
  • 大数据深度学习ResNet深度残差网络详解:网络结构解读与PyTorch实现教程

    本文深入探讨了深度残差网络(ResNet)的核心概念和架构组成。我们从深度学习和梯度消失问题入手,逐一解析了残差块、初始卷积层、残差块组、全局平均池化和全连接层的作用和优点。文章还包含使用PyTorch构建和训练ResNet模型的实战部分,带有详细的代码和解释。 深度

    2024年01月18日
    浏览(49)
  • Pytorch深度学习-----神经网络之Sequential的详细使用及实战详解

    PyTorch深度学习——Anaconda和PyTorch安装 Pytorch深度学习-----数据模块Dataset类 Pytorch深度学习------TensorBoard的使用 Pytorch深度学习------Torchvision中Transforms的使用(ToTensor,Normalize,Resize ,Compose,RandomCrop) Pytorch深度学习------torchvision中dataset数据集的使用(CIFAR10) Pytorch深度学习--

    2024年02月14日
    浏览(44)
  • 【Python】使用Anaconda创建PyTorch深度学习虚拟环境

    使用Anaconda Prompt 查看环境: 创建虚拟环境(python3.10): 激活创建的环境: 在虚拟环境内安装PyTorch: 【Python】CUDA11.7/11.8安装PyTorch三件套_cuda 11.6对应pytorch-CSDN博客 文章浏览阅读3.3w次,点赞29次,收藏169次。安装PyTorch_cuda 11.6对应pytorch https://blog.csdn.net/ericdiii/article/details/125

    2024年01月22日
    浏览(63)
  • Pytorch深度学习实战3-8:详解数据可视化组件TensorBoard安装与使用

    在深度学习领域,网络内部如同黑箱,其中包含大量的连接参数,这给人工调试造成极大的困难。 Tensorboard 则是神经网络的可视化工具,可以记录训练过程的数字、图像、运行图等内容,方便研究人员对训练参数进行统计,观察神经网络训练过程并指导参数优化。 参考

    2023年04月09日
    浏览(43)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包