单片机如何判断高电平时间

这篇具有很好参考价值的文章主要介绍了单片机如何判断高电平时间。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

单片机判断高电平时间的方法通常涉及到定时器的使用。以下是一些常见的方法:

  1. 使用定时器捕获高电平:首先,你需要初始化定时器,并选择合适的预分频。例如,如果你的系统时钟频率是12MHz,你可能会选择预分频为1,这样定时器的工作频率就是12MHz。然后,你需要设置定时器的捕获模式,通常是在上升沿或下降沿触发捕获。当定时器捕获到高电平(上升沿或下降沿)时,它会停止计时,并保存此时刻的值。接着,你可以根据定时器的溢出标志,来确定高电平的持续时间。这种方法的关键在于理解定时器的工作原理以及如何设置其工作模式12。

  2. 使用示波器:另一种方法是使用示波器来测量高电平的持续时间。在待测程序段的开始阶段,你可以使单片机的一个GPIO输出高电平。在待测程序段的结尾阶段,你可以令这个GPIO输出低电平。然后,你可以使用示波器来检查高电平的时间长度,从而得出这段代码的运行时间4。

如何获取io高电平时间,mongodb,数据库

以上两种方法都需要一定的硬件支持,包括定时器模块和GPIO接口。同时,它们也需要一定的编程技巧,包括定时器的初始化和捕获模式的设置。如果你是初学者,可能需要查阅相关的教程或手册来学习这些知识。

摘要:单片机编程者需要知道自己的程序需要花费多长时间、while周期是多少、delay延时是否真如函数功能描述那样精确延时。

很多时候,我们想知道这些参数,但是由于懒惰或者没有简单的办法,将这件事推到“明天”。笔者提出了一种简便的测试方法,可以解决这些问题。

测试代码的运行时间的两种方法

使用单片机内部定时器,在待测程序段的开始启动定时器,在待测程序段的结尾关闭定时器。为了测量的准确性,要进行多次测量,并进行平均取值。

借助示波器的方法是:在待测程序段的开始阶段使单片机的一个GPIO输出高电平,在待测程序段的结尾阶段再令这个GPIO输出低电平。用示波器通过检查高电平的时间长度,就知道了这段代码的运行时间。显然,借助于示波器的方法更为简便。 以下内容为这两种方案的实例,以STM32为测试平台。如果读者是在另外的硬件平台上测试,实际也不难,思路都是一样的,自己可以编写对应的测试代码。

借助示波器方法的实例

Delay_us函数使用STM32系统滴答定时器实现:

#include "systick.h"

/* SystemFrequency / 1000    1ms中断一次
 * SystemFrequency / 100000     10us中断一次
 * SystemFrequency / 1000000 1us中断一次
 */

#define SYSTICKPERIOD                    0.000001
#define SYSTICKFREQUENCY            (1/SYSTICKPERIOD)

/**
  * @brief  读取SysTick的状态位COUNTFLAG
  * @param  无
  * @retval The new state of USART_FLAG (SET or RESET).
  */
static FlagStatus SysTick_GetFlagStatus(void) 
{
    if(SysTick->CTRL&SysTick_CTRL_COUNTFLAG_Msk) 
    {
        return SET;
    }
    else
    {
        return RESET;
    }
}

/**
  * @brief  配置系统滴答定时器 SysTick
  * @param  无
  * @retval 1 = failed, 0 = successful
  */
uint32_t SysTick_Init(void)
{
       /* 设置定时周期为1us  */
    if (SysTick_Config(SystemCoreClock / SYSTICKFREQUENCY)) 
    { 
        /* Capture error */ 
        return (1);
    }

    /* 关闭滴答定时器且禁止中断  */
    SysTick->CTRL &= ~ (SysTick_CTRL_ENABLE_Msk | SysTick_CTRL_TICKINT_Msk);                                                  
    return (0);
}

/**
  * @brief   us延时程序,10us为一个单位
  * @param  
  *        @arg nTime: Delay_us( 10 ) 则实现的延时为 10 * 1us = 10us
  * @retval  无
  */
void Delay_us(__IO uint32_t nTime)
{     
    /* 清零计数器并使能滴答定时器 */  
    SysTick->VAL   = 0;  
    SysTick->CTRL |=  SysTick_CTRL_ENABLE_Msk;     

    for( ; nTime > 0 ; nTime--)
    {
     /* 等待一个延时单位的结束 */
     while(SysTick_GetFlagStatus() != SET);
    }

    /* 关闭滴答定时器 */
    SysTick->CTRL &= ~ SysTick_CTRL_ENABLE_Msk;
}

检验Delay_us执行时间中用到的GPIO(gpio.h、gpio.c)的配置:

#ifndef __GPIO_H
#define    __GPIO_H

#include "stm32f10x.h"

#define     LOW          0
#define     HIGH         1

/* 带参宏,可以像内联函数一样使用 */
#define TX(a)                if (a)    \
                                            GPIO_SetBits(GPIOB,GPIO_Pin_0);\
                                        else        \
                                            GPIO_ResetBits(GPIOB,GPIO_Pin_0)
void GPIO_Config(void);

#endif

#include "gpio.h"   

 /**
  * @brief  初始化GPIO
  * @param  无
  * @retval 无
  */
void GPIO_Config(void)
{        
        /*定义一个GPIO_InitTypeDef类型的结构体*/
        GPIO_InitTypeDef GPIO_InitStructure;

        /*开启LED的外设时钟*/
        RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE); 
                                                           
        GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;    
        GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;     
        GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; 
        GPIO_Init(GPIOB, &GPIO_InitStructure);    
}

在main函数中检验Delay_us的执行时间:

#include "systick.h"
#include "gpio.h"

/**
  * @brief  主函数
  * @param  无  
  * @retval 无
  */
int main(void)
{    
    GPIO_Config();

    /* 配置SysTick定时周期为1us */
    SysTick_Init();

    for(;;)
    {
        TX(HIGH); 
        Delay_us(1);
        TX(LOW);
        Delay_us(100);
    }     
}

示波器的观察结果:

如何获取io高电平时间,mongodb,数据库

可见Delay_us(100),执行了大概102us,而Delay_us(1)执行了2.2us。

更改一下main函数的延时参数:

int main(void)
{    
    /* LED 端口初始化 */
    GPIO_Config();

    /* 配置SysTick定时周期为1us */
    SysTick_Init();

    for(;;)
    {
        TX(HIGH); 
        Delay_us(10);
        TX(LOW);
        Delay_us(100);
    }     
}

示波器的观察结果:

如何获取io高电平时间,mongodb,数据库

可见Delay_us(100),执行了大概101us,而Delay_us(10)执行了11.4us。

结论:此延时函数基本上还是可靠的。

使用定时器方法的实例

至于使用定时器方法,软件检测程序段的执行时间,程序实现思路见STM32之系统滴答定时器:

http://www.cnblogs.com/amanlikethis/p/3730205.html

笔者已经将检查软件的使用封装成库,使用方法在链接文章中也有介绍。我们这里只做一下简要的实践活动。

Delay_us函数使用STM32定时器2实现:

#include "timer.h"

/* SystemFrequency / 1000            1ms中断一次
 * SystemFrequency / 100000     10us中断一次
 * SystemFrequency / 1000000         1us中断一次
 */

#define SYSTICKPERIOD                    0.000001
#define SYSTICKFREQUENCY            (1/SYSTICKPERIOD)

/**
  * @brief  定时器2的初始化,,定时周期1uS
  * @param  无
  * @retval 无
  */
void TIM2_Init(void)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;

    /*AHB = 72MHz,RCC_CFGR的PPRE1 = 2,所以APB1 = 36MHz,TIM2CLK = APB1*2 = 72MHz */
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
    
    /* Time base configuration */         
    TIM_TimeBaseStructure.TIM_Period = SystemCoreClock/SYSTICKFREQUENCY -1;
    TIM_TimeBaseStructure.TIM_Prescaler = 0;
    TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
    
    TIM_ARRPreloadConfig(TIM2, ENABLE);
    
    /* 设置更新请求源只在计数器上溢或下溢时产生中断 */
    TIM_UpdateRequestConfig(TIM2,TIM_UpdateSource_Global); 
    TIM_ClearFlag(TIM2, TIM_FLAG_Update);
}

/**
  * @brief   us延时程序,10us为一个单位
  * @param  
  *        @arg nTime: Delay_us( 10 ) 则实现的延时为 10 * 1us = 10us
  * @retval  无
  */
void Delay_us(__IO uint32_t nTime)
{     
    /* 清零计数器并使能滴答定时器 */  
    TIM2->CNT   = 0;  
    TIM_Cmd(TIM2, ENABLE);     

    for( ; nTime > 0 ; nTime--)
    {
     /* 等待一个延时单位的结束 */
     while(TIM_GetFlagStatus(TIM2, TIM_FLAG_Update) != SET);
     TIM_ClearFlag(TIM2, TIM_FLAG_Update);
    }

    TIM_Cmd(TIM2, DISABLE);
}

在main函数中检验Delay_us的执行时间:

#include "stm32f10x.h"
#include "Timer_Drive.h"
#include "gpio.h"
#include "systick.h"

TimingVarTypeDef Time;

int main(void)
{    
    TIM2_Init();    
    SysTick_Init();
    SysTick_Time_Init(&Time);
    
    for(;;)
    {
        SysTick_Time_Start(); 
        Delay_us(1000);
        SysTick_Time_Stop();
    }     
}

怎么去看检测结果呢?用调试的办法,打开调试界面后,将Time变量添加到Watch一栏中。然后全速运行程序,既可以看到Time中保存变量的变化情况,其中TimeWidthAvrage就是最终的结果。

如何获取io高电平时间,mongodb,数据库

可以看到TimeWidthAvrage的值等于0x119B8,十进制数对应72120,滴答定时器的一个滴答为1/72M(s),所以Delay_us(1000)的执行时间就是72120*1/72M (s) = 0.001001s,也就是1ms。验证成功。

备注:定时器方法输出检测结果有待改善,你可以把得到的TimeWidthAvrage转换成时间(以us、ms、s)为单位,然后通过串口打印出来,不过这部分工作对于经常使用调试的人员来说也可有可无。

两种方法对比

软件测试方法:

操作起来复杂,由于在原代码基础上增加了测试代码,可能会影响到原代码的工作,测试可靠性相对较低。由于使用32位的变量保存systick的计数次数,计时的最大长度可以达到2^32/72M = 59.65 s。

示波器方法

操作简单,在原代码基础上几乎没有增加代码,测试可靠性很高。由于示波器的显示能力有限,超过1s以上的程序段,计时效果不是很理想。但是,通常的单片机程序实时性要求很高,一般不会出现程序段时间超过秒级的情况。

综合对比,推荐使用示波器方法。文章来源地址https://www.toymoban.com/news/detail-812582.html

到了这里,关于单片机如何判断高电平时间的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • 单片机IO模拟串口协议

            嵌入式硬件平台调试中常用的debug方法是看串口打印定位问题,但有时候会遇到单片机没有串口外设或者串口引脚被占用的情况,这时候也可以在代码里操作空闲的IO输出不同个数的脉冲来达到调试的效果,但是要用逻辑分析仪抓线逐个看波形比较费劲。既然都IO抖线

    2024年02月10日
    浏览(43)
  • 51单片机IO口控制

    原理:根据电路图,指向IO口的引脚;拉低电平,灯亮、 如图: [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Zfco4IjK-1690308697530)(C:/Users/xie19/Pictures/Camera Roll/屏幕截图 2023-07-19 014128.png)] [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下

    2024年02月15日
    浏览(38)
  • 【单片机IO口四种模式】

    STC单片机IO口四种工作模式准双向口,推挽输出,高阻输入,开漏输出 STC89C52单片机的IO口都是准双向口,而后期的单片机功能强了IO的工作模式也就多了起来,以STC8G单片机为例,所有IO口有4种工作模式,确切的说所有IO口的每一个位(每一个引脚)都有4种工作模式:准双向

    2024年01月17日
    浏览(29)
  • 32单片机RTC时间接续,掉电时间保存

    前提:首先要实现RTC掉电之后时间还能继续走,RTC电池是必要的 说明:设备第一次启动需要初始化配置RTC,但当二次启动再重新配置RTC会导致RTC计数器置零,所以传统的程序流程是不行的,我们需要知道设备是第一次启动还是二次启动,来判断是否需要重新初始化配置RTC。另

    2024年01月17日
    浏览(46)
  • 51单片机延时程序的延时时间计算

            最近在上单片机原理及应用课程,做实验的时候遇到了软件延时程序如何计算延时时间的问题,经过一阵摸索终于领悟到其中奥秘......耶(比耶)。 延时函数是使用STC-ISP生成的,晶振为12MHz,指令集是STC-Y1(即89系列),使用do while()循环实现软件精确延时。下面讲

    2024年02月11日
    浏览(38)
  • Arduino 单片机程序中处理时间戳、时间溢出和延时问题

    这个话题对其他单片机也适用,就是用来计时的变量万一溢出了该怎么整,类似那个经典的千年虫问题。实际上这个问题在日常生活中也很常见,比如,时钟上的小时最大值为23,从0 开始,每过24 小时归零一次,只按时钟上的小时数来记录时间,最多只能计24 小时。时间超过

    2024年02月10日
    浏览(43)
  • 基于51单片机实现时间显示及闹钟设置

    本次为大学中的一次创新实验,当时老师叫我自己拿个单片机去玩,为了赶时间就做了个简单的时间显示和闹钟设置,因为比较简单所以也把代码附上了。 1.单片机 单片机内部内部资源:Flash——程序存储空间;RAM——数据存储空间;SFR——特殊功能寄存器。51单片机指的是

    2024年02月07日
    浏览(38)
  • 【51单片机】IO 扩展(串转并)--74HC595

    参考: 普中 51 单片机开发攻略 第12章 【51单片机入门教程-2020版 程序全程纯手打 从零开始入门】 https://www.bilibili.com/video/BV1Mb411e7re/?p=21share_source=copy_webvd_source=77e36f24add8dc77c362748ffb980148 nop ()是什么语句? and 位运算操作符 【51单片机入门教程-2020版 程序全程纯手打 从零开始入

    2024年01月22日
    浏览(48)
  • 51单片机基于时间片轮转的简单rtos

    早就想写写这个了,正好赶上有点时间,写了一下基于51单片机的时间片轮转调度系统,简单的rtos,呵呵。直接上代码。 虽然简单,也可以继续学习了。

    2024年02月02日
    浏览(36)
  • 【51单片机】利用【时间延迟】的原理规避【按键抖动问题】

    前言 大家好吖,欢迎来到 YY 滴单片机系列 ,热烈欢迎! 本章主要内容面向接触过单片机的老铁 本章是51LCD单片机设计的一个环节,完整可前往相应博客查看完整 传送门 欢迎订阅 YY 滴C++专栏!更多干货持续更新!以下是传送门! YY的《C++》专栏 YY的《C++11》专栏 YY的《Lin

    2024年02月20日
    浏览(56)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包