Armv8-R AArch32 architecture概念学习

这篇具有很好参考价值的文章主要介绍了Armv8-R AArch32 architecture概念学习。希望对大家有所帮助。如果存在错误或未考虑完全的地方,请大家不吝赐教,您也可以点击"举报违法"按钮提交疑问。

提示

  • 该博客主要为个人学习,通过阅读官网手册整理而来(个人觉得阅读官网的英文文档非常有助于理解各个IP特性)。若有不对之处请参考参考文档,以官网文档为准。
  • 阅读该文章,可以先查看AArch64 Exception Model学习,再来看该文章会非常简单

1. 执行状态

该体系结构只有AArch32执行状态。执行状态定义了处理器的执行环境,包括:

  • 支持寄存器位宽
  • 支持指令集
  • 还有以下几方面
    • 执行模型
    • PMSA
    • 编程模型

2. 异常等级

Armv8-R AArch32的异常等级为: EL0~EL2
EL0:Applications
EL1: 通常被描述为特权的操作系统内核和相关函数
EL2: Hypervisor

  • EL0具有最低的软件执行特权,在EL0处的执行称为非特权执行。
  • 从1到2表示增加了软件执行特权。
  • EL2提供了对处理器虚拟化的支持。
    只有在发生异常或从异常返回时,执行才能在异常级别之间切换:
  • 在发生异常时,异常级别会增加或保持不变。在发生异常时,异常级别无法降低。
  • 当从异常返回时,异常级别会降低或保持不变。当从异常返回时,异常级别无法增加。
    发生异常时执行更改或保留在的异常级别称为异常的目标异常级别,并且:
  • 每个异常类型都有一个目标异常级别:
    • 隐含在异常的性质中
    • 由系统寄存器中的配置位定义
  • 异常目标不能是EL0

3. AArch32执行模式

当处于AArch32状态时,处理器可以以几种模式之一执行。每个模式都与一个异常级别相关联。有些模式有一些通用寄存器的私有、bank副本。异常情况会导致处理器切换到一个特定的模式。
下表显示了AArch32处理器模式,以及每个模式的异常级别
armv8-r aarch32 architecture概念学习,Coretex-R52+学习,Coretex-R52+,AArch32

4. 支持v8内存类型

Armv8提供了互斥的内存类型。内存映射中的每个地址都有一个由MPU决定的内存类型。
内存类型:

  • Normal:这通常用于大容量内存,包括读/写内存和只读内存。
  • Device:这通常用于外设,它们可能是读敏感或写敏感的。Arm架构限制了对设备内存的排序、合并或推测。
    Armv8架构将设备内存细分为几个子类型。这些属性涉及以下属性:
  • G:收集。将请求收集并合并为单个事务的能力。
  • R:重新排序。重新排序事务的能力。
  • E:早期承认。接受来自互连的事务的早期确认的能力。
    下表描述了Armv8的内存类型。
    armv8-r aarch32 architecture概念学习,Coretex-R52+学习,Coretex-R52+,AArch32

5. 系统寄存器

系统寄存器提供控制和状态信息。例如,寄存器可能提供有关core已采取的abort exception的综合信息,或提供一个启用或禁用缓存的控制。
系统寄存器使用一种标准的命名格式,<register_name>.<bit_field_name>,来识别特定的寄存器以及寄存器内的控制位和状态位。位也可以用它们在形式<register__name>[x:y]或通用形式bits[x:y]中的数字位置来描述。
系统寄存器包括:

  • ID registers.
  • General system control registers.
  • Debug registers.
  • Generic Timer registers.
  • Performance Monitor registers.
  • GIC CPU interface registers.

6. 通用寄存器

Armv8-R AArch提供了对15个32位通用寄存器R0-R14的访问。
其中,有两个有专门的或受限制的用途:

  • R13通常被标识为SP,即堆栈指针。
  • R14通常被标识为LR,即链接寄存器。
    当然,还有一个32位的程序计数器(PC),R15。
    其中一些寄存器是bank上的。这些是使用相同的标识符访问的多个物理寄存器,执行模式决定了访问哪个寄存器。例如:
  • 在abort模式下,对SP的访问将访问物理寄存器SP_abt。
  • 在user模式下,对SP的访问将访问物理寄存器SP_usr。
    在Hypervisor模式下,还有一个附加的专用链接寄存器,ELR_hyp。
    高级SIMD和浮点指令使用了另一组寄存器。这些寄存器可以作为32位单精度寄存器S0-S31访问,也可以作为64位双精度寄存器D0- D31访问,或128位四元寄存器Q0-Q15访问,但这些是相同数据的不同视图。数据可以在高级SIMD和浮点寄存器和整数寄存器之间传输。

7. 程序状态寄存器

程序状态寄存器包括当前程序状态寄存器(CPSR)、应用程序状态寄存器(APSR)和已保存的程序状态寄存器(SPSR)。
CPSR包括:

  • 可以由某些指令设置并决定其他指令的行为的标志。
  • 反映处理器的当前模式和其他状态的状态位。
  • 控制位决定例如中断掩蔽和数据大小端。
    CPSR中的许多位都限制了使用,并且只能进行修改:
  • 在特权模式。
  • 作为异常或异常返回的副本。
    呈现给运行在异常级别EL0上的应用程序的CPSR的视图称为APSR。
    每个可以采用异常的模式都有自己的SPSR。每个SPSR用于在发生异常时保存CPSR的副本,从而允许在异常返回时恢复它。

8. 数据类型

AArch32体系结构支持以下整数数据类型:

  • Byte (8 bits).
  • Halfword (16 bits).
  • Word (32 bits).
  • Doubleword (64 bits).
    该架构还支持半精度、单精度和双精度的浮点数据类型。

9. 内存模型

该架构定义了PMSAv8内存模型,以确定:

  • 对指令和数据执行内存访问的排序规则和其他限制。
  • 内存访问的权限和其他属性,以及它们是如何由MPU确定的。
    Cortex-R52+支持PMSAv8,并且没有MMU或地址转换功能。即使MPU不执行任何实际的转换,该函数仍然被称为转换。这是因为物理地址总是与虚拟地址是相同的。虚拟地址和物理地址是指由指令生成的转换前和转换后在总线上可见的地址。虚拟地址和物理地址可以作为Cortex-R52+的一套地址来处理。

10. GIC架构

Cortex-R52+处理器支持GIC架构的三个组件:分发器(Distributor)、再分发器(Redistributor)和CPU接口(CPU interface)。
分发器包含支持SPIs的寄存器,除了优先级逻辑,它计算每个核心的最高优先级等待中断。再分发器包含支持PPIs和SGIs的寄存器。CPU接口跟踪当前正在运行的优先级和虚拟中断。它决定了核心是否被中断。
中断被配置为对边缘触发或电平敏感的。每个中断都具有可编程启用、优先级(0-31)、组(0或1)、路由(仅SPI)配置和当前状态。
当接收到中断信号时,它被pending。根据其配置,一个pending中断可能会中断一个core的执行。软件可以读取中断的ID,并且激活(active)它。软件还可以结束一个中断,从而使其失效(deactives)。
虚拟中断是由系统管理程序(hypervisor)软件写入CPU接口中的列表寄存器而创建的,通常是为了响应物理中断。虚拟中断的处理方式与物理中断类似,但只能在core处于EL0或EL1中时中断它。当一个虚拟中断被停用(deactive)时,可以对其进行配置,即当该虚拟中断被停用时,相应的物理停用消息也会发送给GIC分发器。

该章会单独写几篇文章说明,别担心

参考文献

Arm® Cortex®-R52+ Processor Technical Reference Manual文章来源地址https://www.toymoban.com/news/detail-812763.html

到了这里,关于Armv8-R AArch32 architecture概念学习的文章就介绍完了。如果您还想了解更多内容,请在右上角搜索TOY模板网以前的文章或继续浏览下面的相关文章,希望大家以后多多支持TOY模板网!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处: 如若内容造成侵权/违法违规/事实不符,请点击违法举报进行投诉反馈,一经查实,立即删除!

领支付宝红包 赞助服务器费用

相关文章

  • Learn the architecture - Debugger usage on Armv8- A

    快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】: 【精选】ARMv8/ARMv9架构入门到精通-[目录] 👈👈👈 — 适合小白入门 【目录】ARMv8/ARMv9架构高级进阶-[目录]👈👈👈 — 高级进阶、小白勿买 【加群】ARM/TEE/ATF/SOC/芯片/安全-学习交

    2024年02月05日
    浏览(39)
  • Learn the architecture - Before debugging on Armv8-A

    快速链接: . 👉👉👉 个人博客笔记导读目录(全部) 👈👈👈 付费专栏-付费课程 【购买须知】: 【精选】ARMv8/ARMv9架构入门到精通-[目录] 👈👈👈 — 适合小白入门 【目录】ARMv8/ARMv9架构高级进阶-[目录]👈👈👈 — 高级进阶、小白勿买 【加群】ARM/TEE/ATF/SOC/芯片/安全-学习交

    2024年01月23日
    浏览(48)
  • 交叉编译----宿主机x86 ubuntu 64位-目标机ARMv8 aarch64

    1.交叉编译是什么,为什么要交叉编译 编译:在一个平台上生成在该平台上的可执行代码 交叉编译:在一个平台上生成在另一个平台上的可执行代码 交叉编译的例子:如51单片机的可执行代码(hex文件)是在集成环境keil上面编译完成的,我们只需要将编译好的可执行代码下

    2024年02月15日
    浏览(42)
  • 如何在armv6 armv7 armv8(aarch64)嵌入式板子上面安装nginx服务器,支持H265码流

    为什么要在板子瑞芯微rv1126核心板上面安装nginx服务器,是因为我的项目需要用到拉到连接在板子上面的摄像头,由于是摄像头是直连摄像头的只能通过板子上面的wifi热点设备,先连接这个热点才能获取到这个网络摄像头,那么就需要板子做一个推流的服务器让摄像头的画面

    2024年02月15日
    浏览(47)
  • ARMv8-AArch64 的异常处理模型详解之异常类型 Exception types

    异常(Exception)通俗点来讲,就是系统在正常运行的时候出现的非正常事件,这个非正常事件会导致系统状态更改或者其他错误,为了确保系统功能能正常运行,需要一些带有特权的软件代码(exception handler)来采取一些补救措施或者更新系统状态,这个过程被称为异常处理

    2024年01月21日
    浏览(37)
  • ARMv8-AArch64 的异常处理模型详解之异常等级、执行状态以及安全状态

    在了解AArch64异常等级模型之前,有必要先理解特权的概念。现代软件被开发成不同的模块,每个模块对系统和处理器资源有不同的访问级别。比如操作系统内核和用户应用程序的划分。操作系统内核需要高级别的权限来访问系统资源,然而应用程序应当被限制其配置系统的能

    2024年02月03日
    浏览(38)
  • ARMv8-AArch64 的异常处理模型详解之异常处理概述Handling exceptions

    在介绍异常处理之前,有必要了解一些关于异常处理状态的术语: 当处理器响应一个异常时,我们称该异常被获取了( taken )。 处理器响应异常之前的状态被称为 taken from 。 处理器响应异常之后的状态被称为 taken to 。 因此,当处理器识别到异常时,此时处理器处于 taken

    2024年02月20日
    浏览(44)
  • ARMv8-AArch64 的异常处理模型详解之异常向量表vector tables

    目录 一,AArch64 异常向量表  二,栈指针以及SP寄存器的选择 三,从异常返回   异常向量表 (vector tables) 是一组存放于普通内存( normal memory) 空间的,用于处理不同类型异常的指令(exception handler)。 当异常发生时,处理器需要跳转到对应的异常处理器(exception handler)

    2024年02月22日
    浏览(49)
  • 带wiringPi库的交叉编译 ---宿主机x86Ubuntu,目标机ARMv8 aarch64(香橙派)

    带wiringPi库的交叉编译如何进行 先交叉编译wiringPi库,编译出的库适合香橙派,这时候交叉编译可执行程序的平台和链接库的格式也是正确的 ,然后通过-I和-L来指定链接的wiringPi库的头文件和库的位置,但是现在还没有学习过,后面学了补上 此时如果把wiringPi库拿到Ubuntu上进

    2024年02月15日
    浏览(43)
  • ARMv8-AArch64 的异常处理模型详解之异常处理详解(同步异常和异步异常的分析和处理)

    在文章ARMv8-AArch64 的异常处理模型详解之异常类型 Exception types中提到过,同步异常是处理器在执行指令时产生的异常,是一种精确的,可以具体定位到是哪条指令导致异常的产生。下面笔者将介绍三个用于定位并分析同步异常产生的寄存器。 在文章ARMv8-AArch64 的异常处理模型

    2024年03月27日
    浏览(45)

觉得文章有用就打赏一下文章作者

支付宝扫一扫打赏

博客赞助

微信扫一扫打赏

请作者喝杯咖啡吧~博客赞助

支付宝扫一扫领取红包,优惠每天领

二维码1

领取红包

二维码2

领红包